1.Shanxi Key Laboratory of Ischemic Cardiovascular Disease; Institute of Basic & Translational Medicine, Xi’an Medical University, Xi’an 710021, China
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
3.Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
jkshen@simm.ac.cn
hejianhua@sinap.ac.cn
Scan for full text
Jian LI, Feng SHI, Dan-Qi CHEN, et al. FS23 binds to the N-terminal domain of human Hsp90: A novel small inhibitor for Hsp90. [J]. Nuclear Science and Techniques 26(6):060503(2015)
Jian LI, Feng SHI, Dan-Qi CHEN, et al. FS23 binds to the N-terminal domain of human Hsp90: A novel small inhibitor for Hsp90. [J]. Nuclear Science and Techniques 26(6):060503(2015) DOI: 10.13538/j.1001-8042/nst.26.060503.
The N-terminal domain of heat shock protein 90 (Hsp90,N,) is responsible for the catalytic activity of Hsp90. The reported inhibitors of Hsp90 bind to this domain and would inhibit tumor growth and progression. Here, we synthesized FS23, a small molecule inhibitor of hsp90 and collected X-ray diffraction data of the complex crystal of Hsp90-FS23. High resolution X-ray crystallography shows that FS23 interacted with Hsp90,N, at the nucleotide binding cleft, and this suggests that FS23 may complete with nucleotides to bind to Hsp90,N,. The crystal structure and the interaction between Hsp90,N, and FS23 suggest a rational basis for the design of novel antitumor drugs.
Heat shock protein 90N-terminal domainInhibitorX-ray diffractionInteractions
G Scapin. Structural biology and drug discovery. Curr Pharm Design, 2006, 12: 2087-2897. DOI: 10.2174/138161206777585201http://doi.org/10.2174/138161206777585201
E Ennifar. X-ray crystallography as a tool for mechanism-of-action studies and drug discovery. Curr Pharm Biotechno, 2013, 14: 537-550. DOI: 10.2174/138920101405131111104824http://doi.org/10.2174/138920101405131111104824
C Prodromou, S M Roe, R O’Brien, et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell, 1997, 90: 65-75. DOI: 10.1016/S0092-8674(00)80314-1http://doi.org/10.1016/S0092-8674(00)80314-1
T Sato, S Minagawa, E Kojima, et al. HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942. Mol Microbiol, 2010, 76: 576-589. DOI: 10.1111/j.1365-2958.2010.07139.xhttp://doi.org/10.1111/j.1365-2958.2010.07139.x
S F Harris, A K Shiau and D A Agard. The crystal structure of the carboxy-terminal dimerization domain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure, 2004, 12: 1087-1097. DOI: 10.1016/j.str.2004.03.020http://doi.org/10.1016/j.str.2004.03.020
C E Stebbins, A A Russo, C Schneider, et al. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell, 1997, 89: 239-250. DOI: 10.1016/S0092-8674(00)80203-2http://doi.org/10.1016/S0092-8674(00)80203-2
A J Caplan. Hsp90’s secrets unfold: new insights from structural and functional studies. Trends Cell Biol, 1999, 9: 262-268. DOI: 10.1016/S0962-8924(99)01580-9http://doi.org/10.1016/S0962-8924(99)01580-9
W B Pratt and D O Toft. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med, 2003, 228: 111-133. DOI: 10.1002/9781118063903.ch6http://doi.org/10.1002/9781118063903.ch6
D Picard. Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci, 2002, 59: 1640-1648. DOI: 10.1007/PL00012491http://doi.org/10.1007/PL00012491
A Maloney and P Workman. Hsp90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Th, 2002, 2: 3-24. DOI: 10.1517/14712598.2.1.3http://doi.org/10.1517/14712598.2.1.3
A Kamal, L Thao, J Sensintaffar, et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature, 2003, 425: 407-410. DOI: 10.1038/nature01913http://doi.org/10.1038/nature01913
G Chiosis, B Lucas, A Shtil, et al. Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorgan Med Chem, 2002, 10: 3555-3564. DOI: 10.1016/S0968-0896(02)00253-5http://doi.org/10.1016/S0968-0896(02)00253-5
J G Supko, R L Hickman, M R Grever, et al. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemoth Pharm, 1995, 36: 305-315. DOI: 10.1007/BF00689048http://doi.org/10.1007/BF00689048
S M Roe, C Prodromou, R O’Brien, et al. Structural Basis for Inhibition of the Hsp90 Molecular Chaperone by the Antitumor Antibiotics Radicicol and Geldanamycin. J Med Chem, 1999, 42: 260-266. DOI: 10.1021/jm980403yhttp://doi.org/10.1021/jm980403y
L H Pearl and C Prodromou. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem, 2006, 75: 271-294. DOI: 10.1146/annurev.biochem.75.103004.142738http://doi.org/10.1146/annurev.biochem.75.103004.142738
A K Shiau, S F Harris, D R Southworth, et al. Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell, 2006, 127: 329-340. DOI: 10.1016/j.cell.2006.09.027http://doi.org/10.1016/j.cell.2006.09.027
S K Wandinger, K Richter and J Buchner. The Hsp90 chaperone machinery. J Biol Chem, 2008, 283: 18473-18477. DOI: 10.1074/jbc.R800007200http://doi.org/10.1074/jbc.R800007200
L Al Shaer, E Walsby, A Gilkes, et al. Heat shock protein 90 inhibition is cytotoxic to primary AML cells expressing mutant FLT3 and results in altered downstream signaling. Brit J Haematol, 2008, 141:483-93. DOI: 10.1111/j.1365-2141.2008.07053.xhttp://doi.org/10.1111/j.1365-2141.2008.07053.x
K Jilani, S Qadri and F Lang. Geldanamycin-induced phosphatidylserine translocation in the erythrocyte membrane. Cell Physiol Biochem, 2013, 32: 1600-1609. DOI: 10.1159/000356596http://doi.org/10.1159/000356596
Y Y Li, T Zhang and D X Sun. New developments in Hsp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Update, 2009, 12: 17-27. DOI: 10.1016/j.drup.2008.12.002http://doi.org/10.1016/j.drup.2008.12.002
M J Egorin, T F Lagattuta, D R Hamburger, et al. Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (NSC 707545) in CD 2 F 1 mice and Fischer 344 rats. Cancer Chemoth Pharm, 2002, 49: 7-19. DOI: 10.1007/s12272-010-1213-2http://doi.org/10.1007/s12272-010-1213-2
T W Schulte and L M Neckers. The benzoquinone ansamycin 17-allylamino-7-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemoth Pharm, 1998, 42: 273-279. DOI: 10.1007/s002800050817http://doi.org/10.1007/s002800050817
J R Sydor, E Normant, C S Pien, et al. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. P Natl Acad Sci USA, 2006, 103: 17408-17413. DOI: 10.1073/pnas.0608372103http://doi.org/10.1073/pnas.0608372103
T Zhang, A Hamza, X H Cao, et al. A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther, 2008, 7: 162-170. DOI: 10.1158/1535-7163.MCT-07-0484http://doi.org/10.1158/1535-7163.MCT-07-0484
J R Porter, C C Fritz and K M Depew. Discovery and development of Hsp90 inhibitors: a promising pathway for cancer therapy. Curr Opin Chem Biol, 2010, 14: 412-420. DOI: 10.1016/j.cbpa.2010.03.019http://doi.org/10.1016/j.cbpa.2010.03.019
L Neckers. Development of small molecule Hsp90 inhibitors: Utilizing both forward and reverse chemical genomics for drug identification. Curr Med Chem, 2003, 10: 733-739. DOI: 10.2174/0929867033457818#sthash.6kGY1Nyp.dpufhttp://doi.org/10.2174/0929867033457818#sthash.6kGY1Nyp.dpuf
C W Murray, M L Verdonkv and D C Rees. Experiences in fragment-based drug discovery. Trends Pharmacol Sci, 2010, 33: 224-232. DOI: 10.1016/j.tips.2012.02.006http://doi.org/10.1016/j.tips.2012.02.006
D Chen, A Shen, J Li, et al. Discovery of potent N-(isoxazol-5-yl)amides as HSP90 inhibitors. Eur J Med Chem, 2014, 87: 765-781. DOI: 10.1016/j.ejmech.2014.09.065http://doi.org/10.1016/j.ejmech.2014.09.065
J Ren, J Li, Y Wang, et al. Identification of a New Series of Potent Diphenol HSP90 Inhibitors by Fragment Merging and Structure-based Optimization. Bioorg Med Chem Lett, 2014, 24: 2525-2529. DOI: 10.1016/j.bmcl.2014.03.100http://doi.org/10.1016/j.bmcl.2014.03.100
J Ren, M Yang, H Liu, et al. Multi-substituted 8-aminoimidazo[1,2-a]pyrazines by Groebke-Blackburn-Bienaymé reaction and their Hsp90 inhibitory activity. Org Biomol Chem, 2015, 13:1531-5. DOI: 10.1039/c4ob01865fhttp://doi.org/10.1039/c4ob01865f
J Li, L Sun, C Xu, et al. Structure insights into mechanisms of ATP hydrolysis and the activation of human heat-shock protein 90. Acta Biochim Biophys Sin, 2012, 44: 300-306. DOI: 10.1093/abbs/gms001http://doi.org/10.1093/abbs/gms001
Q S Wang, F Yu, S Huang, et al. The macromolecular crystallography beamline of SSRF. Nucl Sci Tech, 2015, 26: 010102. DOI: 10.13538/j.1001-8042/nst.26.010102http://doi.org/10.13538/j.1001-8042/nst.26.010102
Z Otwinowski and W Minor. Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol, 1997, 276: 307-326. DOI: 10.1016/S0076-6879(97)76066-Xhttp://doi.org/10.1016/S0076-6879(97)76066-X
P D Adams, P V Afonine, G Bunkoczi, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D, 2010, 66: 213-221. DOI: 10.1107/S0907444909052925http://doi.org/10.1107/S0907444909052925
P Emsley and K Cowtan. Coot: Model-building tools for molecular graphics. Acta Crystallogr D, 2004, 60: 2126-2132. DOI: 10.1107/S0907444904019158http://doi.org/10.1107/S0907444904019158
0
Views
2
Downloads
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution