1.Gerze Vocational School, Sinop University, Sinop, Turkey
2.Department of Physics, Karadeniz Technical University, Trabzon 61080, Turkey
3.Department of Engineering Fundamental Sciences, Alanya Alaaddin Keykubat University, Antalya, Turkey
4.Vocational School of Health Services, Sinop University, Sinop, Turkey
Corresponding author, t.bayram@ymail.com
Scan for full text
Alev Erenler, Tuncay Bayram, Yusuf Demirel, 等. An investigation of gamma ray mass attenuation from 80.1 keV to 834.86 keV for fabric coating pastes used in textile sector[J]. 核技术(英文版), 2020,31(6):57
Alev Erenler, Tuncay Bayram, Yusuf Demirel, et al. An investigation of gamma ray mass attenuation from 80.1 keV to 834.86 keV for fabric coating pastes used in textile sector[J]. Nuclear Science and Techniques, 2020,31(6):57
Alev Erenler, Tuncay Bayram, Yusuf Demirel, 等. An investigation of gamma ray mass attenuation from 80.1 keV to 834.86 keV for fabric coating pastes used in textile sector[J]. 核技术(英文版), 2020,31(6):57 DOI: 10.1007/s41365-020-00765-y.
Alev Erenler, Tuncay Bayram, Yusuf Demirel, et al. An investigation of gamma ray mass attenuation from 80.1 keV to 834.86 keV for fabric coating pastes used in textile sector[J]. Nuclear Science and Techniques, 2020,31(6):57 DOI: 10.1007/s41365-020-00765-y.
In the present study, we investigate several textile coating pastes used in the market based on their radiation protection capability for gamma rays. The gamma ray mass absorption coefficients of some coating pastes doped with antimony, boron and silver elements have been investigated. It has been determined that the gamma ray mass attenuation coefficient decreases rapidly as the energy of the gamma rays increases. It was determined that the doping of the main printing paste with silver and antimony considerably increased the gamma ray absorption capability of main paste. However, the doping of the paste with boron reduces the mass absorption of gamma rays. In particular, the gamma ray mass absorption power of the main paste doped with silver and antimony was determined to be useful in the gamma energy range from 80 keV to 140 keV. This indicates that the newly doped textile material may be considered for radiation protection in the case of low-energy gamma rays.
Gamma ray absorptionRadiation protectionPrinting pastesantimonysilver
W. Sudprasert, P. Navasumrit, M. Ruchirawat, Effects of low-dose gamma radiation on DNA damage, chromosomal aberration and expression of repair genes in human blood cells, Int. J. Hyg. Environ. Health, 209(6), 503-511 (2006). https://doi.org/10.1016/j.ijheh.2006.06.004https://doi.org/10.1016/j.ijheh.2006.06.004
International Atomic Energy Agency, Effects of ionizing radiation on blood and blood components: A survey. (IAEA, 1997).
World Nuclear Association, Nuclear Power in the World Today. https://www.world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today.aspxhttps://www.world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today.aspx. Accessed 14 Mach 2020.
IAEA-NUMDAB (International Atomic Energy Agency Nuclear Medicine Database) Nuclear Medicine Centers. https://nucmedicine.iaea.org/statistics/infrastructurehttps://nucmedicine.iaea.org/statistics/infrastructure. Accessed 14 Mach 2020.
T. Molla, Dissertion, Süleyman Demirel University, 2011.
International Atomic Energy Agency, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standarts. (IAEA, 2011).
R. L. Murray, K. E. Holbert, Nuclear Energy, 2nd edn. (Elsevier, 2015), pp. 71-87.
K. S. Krane, Inductory Nuclear Physics, 1th edn. (John Wiley & Sons Inc., New York, 1987), pp. 788-808.
M. Demir, Radyasyon Güvenliği ve Radyasyondan Korunma, 1th edn. (İstanbul Üniversitesi Yayınları, İstanbul, 2013), pp. 25-46.
World Health Organization (WHO), Basics of Radiation Protection-How to achieve ALARA: Working tips and guidelines. (WHO, Geneva, 2004).
M. Dong, X. Xue, V. Singh, et al., Shielding effectiveness of boron-containing ores in Liaoning province of China against gamma rays and thermal neutrons, Nucl. Sci. Tech., 29(4), 58 (2018). https://link.springer.com/article/10.1007%2Fs41365-018-0397-xhttps://link.springer.com/article/10.1007%2Fs41365-018-0397-x
V. P. Singh, N. M. Badiger, Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons, Glass Physics and Chemistry, 41(3), 276-283 (2015). https://link.springer.com/article/10.1134/S1087659615030177https://link.springer.com/article/10.1134/S1087659615030177
V. P. Singh, N. M. Badiger, Gamma ray and neutron shielding properties of some alloy materials, Ann. Nucl. Energy, 64, 301-310 (2014). https://doi.org/10.1016/j.anucene.2013.10.003https://doi.org/10.1016/j.anucene.2013.10.003
V. P. Singh, N. M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: Comparative study, J. Non-Cryst Solids, 404, 167-173 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.08.003https://doi.org/10.1016/j.jnoncrysol.2014.08.003
Y. Zhang, Y. Song, X. Yu, et al., Calculation and analysis of neutron and gamma shielding performance based on boron-containing stainless steel materials, Nucl. Tech., 42(9), 90201-090201 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.090201https://doi.org/10.11889/j.0253-3219.2019.hjs.42.090201
A. Müjde, Dissertion, Ağrı İbrahim Çeçen University, 2012.
N. Aral, F. B. Nergis, C. Candan, An alternative X-ray shielding material based on coated textiles. Text. Res. J., 86(8), 803-811 (2016). https://journals.sagepub.com/doi/10.1177/0040517515590409https://journals.sagepub.com/doi/10.1177/0040517515590409
H. A. Maghrabi, A. Vijayan, P. Deb,et al., Bismuth oxide-coated fabrics for X-ray shielding. Text. Res. J., 86(6), 649-658 (2016). https://journals.sagepub.com/doi/full/10.1177/0040517515592809https://journals.sagepub.com/doi/full/10.1177/0040517515592809
L. Qu, M. Tian, X. Zhang, et al., Barium sulfate/regenerated cellulose composite fiber with X-ray radiation resistance, J. Ind. Text., 45(3), 352-367 (2015). https://journals.sagepub.com/doi/10.1177/1528083714534708https://journals.sagepub.com/doi/10.1177/1528083714534708
A. Demirkurt, Dissertion, Süleyman Demirel Univerity, 2014.
S. Emikönel, Dissertion, Süleyman Demirel Univerity, 2015.
H. Özdemir, B. Camgöz, Gamma radiation shielding efectiveness of cellular woven fabrics, J. Ind. Text. 47(5), 712-726 (2018). https://journals.sagepub.com/doi/pdf/10.1177/1528083716670309https://journals.sagepub.com/doi/pdf/10.1177/1528083716670309
B. Camgöz, H. Özdemir, Tekstil ve Konfeksiyon, 28(1), 72-79 (2018).
J. E. Martin, Physics for Radiation Protection, 3th edn. (Wiley, Weinheim, 2013), pp. 307-361.
N. Y. Yorgun, Gamma-ray shielding parameters of Li2B4O7 glasses: undoped and doped with magnetite, siderite and Zinc-Borate minerals cases, Radiochim. Acta 107(8), 755-765 (2019). https://doi.org/10.1515/ract-2019-0014https://doi.org/10.1515/ract-2019-0014
J. H. Hubbell, S. M. Seltzer, X-Ray Mass Attenuation Coefficients: NIST Standard Reference Database 126. (NIST, 2004).
S. R. Manohara, S. M. Hanagodimath, K. S. Thind, et al., On the effective atomic number and electron density: A comprehensive set of formulas for all types of materials and energies above 1 keV, Nucl. Instrum. Methods 266(18), 3906-3912 (2008). https://doi.org/10.1016/j.nimb.2008.06.034https://doi.org/10.1016/j.nimb.2008.06.034
M. E Wieser, M. Berglund, Atomic weights of the elements 2007 (IUPAC Technical Report), Pure Appl. Chem. 81(11), 2131-2156 (2009). https://publications.iupac.org/pac/81/11/2131/index.htmlhttps://publications.iupac.org/pac/81/11/2131/index.html
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构