1.State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230029, China
2.Department of Modern Physics, University of Science and Technology of China, Hefei 230029, China
Corresponding author, ephy@ustc.edu.cn
Scan for full text
Ze-Bo Tang, Wang-Mei Zha, Yi-Fei Zhang. An experimental review of open heavy flavor and quarkonium production at RHIC[J]. 核技术(英文版), 2020,31(8):81
Ze-Bo Tang, Wang-Mei Zha, Yi-Fei Zhang. An experimental review of open heavy flavor and quarkonium production at RHIC[J]. Nuclear Science and Techniques, 2020,31(8):81
Ze-Bo Tang, Wang-Mei Zha, Yi-Fei Zhang. An experimental review of open heavy flavor and quarkonium production at RHIC[J]. 核技术(英文版), 2020,31(8):81 DOI: 10.1007/s41365-020-00785-8.
Ze-Bo Tang, Wang-Mei Zha, Yi-Fei Zhang. An experimental review of open heavy flavor and quarkonium production at RHIC[J]. Nuclear Science and Techniques, 2020,31(8):81 DOI: 10.1007/s41365-020-00785-8.
Open heavy flavors and quarkonia are unique probes of the hot-dense medium produced in heavy-ion collisions. Their production in ,p,+,p, collisions also constitutes an important test of QCD. In this paper, we review selected results on the open heavy flavors and quarkonia generated in the ,p,+,p, and heavy-ion collisions at the Relativistic Heavy Ion Collider. The physical implications are also discussed.
Heavy flavorHeavy quarkQuarkoniumQuark-gluon plasmaHeavy-ion collisionsQCD
M. Gyulassy, The QGP discovered at RHIC. arXiv:nucl-th/0403032
S.A. Bass, M. Gyulassy, H. Stoecker, et al., Signatures of quark gluon plasma formation in high-energy heavy ion collisions: A Critical review. J. Phys. 25, R1-R57 (1999). https://doi.org/10.1088/0954-3899/25/3/013https://doi.org/10.1088/0954-3899/25/3/013
J. Adams, et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. 757, 102-183 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085https://doi.org/10.1016/j.nuclphysa.2005.03.085
K. Adcox, et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. 757, 184-283 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086https://doi.org/10.1016/j.nuclphysa.2005.03.086
B. Muller, J. Schukraft, B. Wyslouch, First Results from Pb+Pb collisions at the LHC. Ann. Rev. Nucl. Part. Sci. 62, 361-386 (2012). https://doi.org/10.1146/annurev-nucl-102711-094910https://doi.org/10.1146/annurev-nucl-102711-094910
J. Chen, D. Keane, Y.G. Ma, et al., Antinuclei in heavy-ion collisions. Phys. Rept. 760, 1-39 (2018). arXiv:1808.09619, https://doi.org/10.1016/j.physrep.2018.07.002https://doi.org/10.1016/j.physrep.2018.07.002
Y.L. Dokshitzer, D.E. Kharzeev, Heavy quark colorimetry of QCD matter. Phys. Lett. 519, 199-206 (2001). arXiv:hep-ph/0106202, https://doi.org/10.1016/S0370-2693(01)01130-3https://doi.org/10.1016/S0370-2693(01)01130-3
L. Adamczyk, et al., Observation of D0 meson nuclear modifications in Au+Au collisions at GeV. Phys. Rev. Lett. 113, 142301 (2014). [Erratum: Phys. Rev. Lett.121,no.22,229901(2018)]. arXiv:1404.6185, https://doi.org/10.1103/PhysRevLett.121.229901https://doi.org/10.1103/PhysRevLett.121.229901, https://doi.org/110.1103/PhysRevLett.113.142301https://doi.org/110.1103/PhysRevLett.113.142301
B. Abelev, et al., Suppression of high transverse momentum D mesons in central Pb-Pb collisions at TeV. JHEP 09, 112 (2012). https://doi.org/10.1007/JHEP09(2012)112https://doi.org/10.1007/JHEP09(2012)112
M. Djordjevic, M. Gyulassy, S. Wicks, The charm and beauty of RHIC and LHC. Phys. Rev. Lett. 94, 112301 (2005). https://doi.org/10.1103/PhysRevLett.94.112301https://doi.org/10.1103/PhysRevLett.94.112301
A. Buzzatti, M. Gyulassy, Jet flavor tomography of quark gluon plasmas at RHIC and LHC. Phys. Rev. Lett. 108, 022301 (2012). https://doi.org/10.1103/PhysRevLett.108.022301https://doi.org/10.1103/PhysRevLett.108.022301
A.M. Poskanzer, S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. 58, 1671-1678 (1998). https://doi.org/10.1103/PhysRevC.58.1671https://doi.org/10.1103/PhysRevC.58.1671
L. Adamczyk, et al., Measurement of D0 azimuthal anisotropy at midrapidity in Au+Au collisions at =200 GeV. Phys. Rev. Lett. 118, 212301 (2017). https://doi.org/10.1103/PhysRevLett.118.212301https://doi.org/10.1103/PhysRevLett.118.212301
B. Abelev, et al., D meson elliptic flow in non-central Pb-Pb collisions at = 2.76TeV. Phys. Rev. Lett. 111, 102301 (2013). https://doi.org/10.1103/PhysRevLett.111.102301https://doi.org/10.1103/PhysRevLett.111.102301
B.B. Abelev, et al., Azimuthal anisotropy of D meson production in Pb-Pb collisions at TeV. Phys. Rev. 90, 034904 (2014). https://doi.org/10.1103/PhysRevC.90.034904https://doi.org/10.1103/PhysRevC.90.034904
H. Satz, Quarkonium binding and dissociation: The spectral analysis of the QGP. Nucl. Phys. 783, 249-260 (2007). https://doi.org/10.1016/j.nuclphysa.2006.11.026https://doi.org/10.1016/j.nuclphysa.2006.11.026
T. Matsui, H. Satz, J/ψ suppression by Quark-Gluon Plasma formation. Phys. Lett. 178, 416 (1986). https://doi.org/10.1016/0370-2693(86)91404-8https://doi.org/10.1016/0370-2693(86)91404-8
M.C. Abreu, et al., Evidence for deconfinement of quarks and gluons from the J/ψ suppression pattern measured in Pb + Pb collisions at the CERN SPS. Phys. Lett. 477, 28-36 (2000). https://doi.org/10.1016/S0370-2693(00)00237-9https://doi.org/10.1016/S0370-2693(00)00237-9
M. Cacciari, P. Nason, R. Vogt, QCD predictions for charm and bottom production at RHIC. Phys. Rev. Lett. 95, 122001 (2005). https://doi.org/10.1103/PhysRevLett.95.122001https://doi.org/10.1103/PhysRevLett.95.122001
R. Vogt, The Total charm cross-section. Eur. Phys. J. ST 155, 213-222 (2008). https://doi.org/10.1140/epjst/e2008-00603-5https://doi.org/10.1140/epjst/e2008-00603-5
L. Adamczyk, et al., Measurements of D0 and D* Production in p+p Collisions at GeV. Phys. Rev. 86, 072013 (2012). https://doi.org/10.1103/PhysRevD.86.072013https://doi.org/10.1103/PhysRevD.86.072013
Z. Ye, Open charm hadron production in p+p, Au+Au and U+U collisions at STAR. Nucl. Phys. 931, 520-524 (2014). https://doi.org/10.1016/j.nuclphysa.2014.08.106https://doi.org/10.1016/j.nuclphysa.2014.08.106
D. Acosta, et al., Measurement of prompt charm meson production cross sections in collisions at TeV. Phys. Rev. Lett. 91, 241804 (2003). https://doi.org/10.1103/PhysRevLett.91.241804https://doi.org/10.1103/PhysRevLett.91.241804
B. Abelev, et al., Measurement of charm production at central rapidity in proton-proton collisions at TeV. JHEP 07, 191 (2012). https://doi.org/10.1007/JHEP07(2012)191https://doi.org/10.1007/JHEP07(2012)191
B. Abelev, et al., Measurement of charm production at central rapidity in proton-proton collisions at TeV. JHEP 01, 128 (2012). https://doi.org/10.1007/JHEP01(2012)128https://doi.org/10.1007/JHEP01(2012)128
S. Acharya, et al., Measurement of D-meson production at mid-rapidity in pp collisions at TeV. Eur. Phys. J. 77, 550 (2017). https://doi.org/10.1140/epjc/s10052-017-5090-4https://doi.org/10.1140/epjc/s10052-017-5090-4
M. Cacciari, M. Greco, P. Nason, The pT spectrum in heavy flavor hadroproduction. JHEP 05, 007 (1998). https://doi.org/10.1088/1126-6708/1998/05/007https://doi.org/10.1088/1126-6708/1998/05/007
M. Cacciari, S. Frixione, P. Nason, The pT spectrum in heavy flavor photoproduction. JHEP 03, 006 (2001). https://doi.org/10.1088/1126-6708/2001/03/006https://doi.org/10.1088/1126-6708/2001/03/006
X. Luo, S. Shi, N. Xu, et al., A Study of the Properties of the QCD Phase Diagram in High-Energy Nuclear Collisions. Particles 3, 278-307 (2020). https://doi.org/10.3390/particles3020022https://doi.org/10.3390/particles3020022
H. Qiu, STAR heavy flavor tracker. Nucl. Phys. 931, 1141-1146 (2014). https://doi.org/10.1016/j.nuclphysa.2014.08.056https://doi.org/10.1016/j.nuclphysa.2014.08.056
Y. Zhang, J. Bouchet, X. Dong, et al., Study of bottom production with the STAR Heavy Flavor Tracker. J. Phys. 41, 025103 (2014). https://doi.org/10.1088/0954-3899/41/2/025103https://doi.org/10.1088/0954-3899/41/2/025103
J. Adam, et al., Centrality and transverse momentum dependence of D0-meson production at mid-rapidity in Au+Au collisions at . Phys. Rev. 99, 034908 (2019). https://doi.org/10.1103/PhysRevC.99.034908https://doi.org/10.1103/PhysRevC.99.034908
L. Zhou, Measurements of and productions in Au+Au collisions at = 200 GeV from STAR. Nucl. Phys. 967, 620-623 (2017). https://doi.org/10.1016/j.nuclphysa.2017.05.114https://doi.org/10.1016/j.nuclphysa.2017.05.114
J. Adam, et al., First measurement of Λc baryon production in Au+Au collisions at . Phys. Rev. Lett. 124, 172301 (2020). https://doi.org/10.1103/PhysRevLett.124.172301https://doi.org/10.1103/PhysRevLett.124.172301
J. Adam, et al., Transverse momentum dependence of D-meson production in Pb-Pb collisions at 2.76 TeV. JHEP 03, 081 (2016). https://doi.org/10.1007/JHEP03(2016)081https://doi.org/10.1007/JHEP03(2016)081
B. Abelev, et al., Centrality dependence of charged particle production at large transverse momentum in Pb-Pb collisions at TeV. Phys. Lett. 720, 52-62 (2013). https://doi.org/10.1016/j.physletb.2013.01.051https://doi.org/10.1016/j.physletb.2013.01.051
B.I. Abelev, et al., Energy dependence of pi+-, p and anti-p transverse momentum spectra for Au+Au collisions at = 62.4 and 200-GeV. Phys. Lett. 655, 104-113 (2007). https://doi.org/10.1016/j.physletb.2007.06.035https://doi.org/10.1016/j.physletb.2007.06.035
S. Cao, T. Luo, G.Y. Qin, et al., Linearized Boltzmann transport model for jet propagation in the quark-gluon plasma: Heavy quark evolution. Phys. Rev. 94, 014909 (2016). And private communication. https://doi.org/10.1103/PhysRevC.94.014909https://doi.org/10.1103/PhysRevC.94.014909
Y. Xu, J.E. Bernhard, S.A. Bass, et al., Data-driven analysis for the temperature and momentum dependence of the heavy-quark diffusion coefficient in relativistic heavy-ion collisions. Phys. Rev. 97, 014907 (2018). https://doi.org/10.1103/PhysRevC.97.014907https://doi.org/10.1103/PhysRevC.97.014907
E. Schnedermann, J. Sollfrank, U.W. Heinz, Thermal phenomenology of hadrons from 200-A/GeV S+S collisions. Phys. Rev. 48, 2462-2475 (1993). https://doi.org/10.1103/PhysRevC.48.2462https://doi.org/10.1103/PhysRevC.48.2462
Z. Tang, et al., Spectra and radial flow at RHIC with Tsallis statistics in a Blast-Wave description. Phys. Rev. 79, 051901 (2009). https://doi.org/10.1103/PhysRevC.79.051901https://doi.org/10.1103/PhysRevC.79.051901
J. Adams, et al., Identified particle distributions in pp and Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 92, 112301 (2004). https://doi.org/10.1103/PhysRevLett.92.112301https://doi.org/10.1103/PhysRevLett.92.112301
B.I. Abelev, et al., Partonic flow and phi-meson production in Au + Au collisions at = 200-GeV. Phys. Rev. Lett. 99, 112301 (2007). https://doi.org/10.1103/PhysRevLett.99.112301https://doi.org/10.1103/PhysRevLett.99.112301
J. Adams, et al., Scaling properties of hyperon production in Au+Au collisions at = 200-GeV. Phys. Rev. Lett. 98, 062301 (2007). https://doi.org/10.1103/PhysRevLett.98.062301https://doi.org/10.1103/PhysRevLett.98.062301
L. Adamczyk, et al., J/ψ production at low pT in Au + Au and Cu + Cu collisions at GeV with the STAR detector. Phys. Rev. 90, 024906 (2014). https://doi.org/10.1103/PhysRevC.90.024906https://doi.org/10.1103/PhysRevC.90.024906
T. Csorgo, B. Lorstad, Bose-Einstein correlations for three-dimensionally expanding, cylindrically symmetric, finite systems. Phys. Rev. 54, 1390-1403 (1996). https://doi.org/10.1103/PhysRevC.54.1390https://doi.org/10.1103/PhysRevC.54.1390
P.F. Kolb, U.W. Heinz, Hydrodynamic description of ultrarelativistic heavy ion collisions. 634-714 (2003). arXiv:nucl-th/0305084
A. Bazavov, et al., The chiral and deconfinement aspects of the QCD transition. Phys. Rev. 85, 054503 (2012). https://doi.org/10.1103/PhysRevD.85.054503https://doi.org/10.1103/PhysRevD.85.054503
B.I. Abelev, et al., Centrality dependence of charged hadron and strange hadron elliptic flow from = = 200-GeV Au + Au collisions. Phys. Rev. 77, 054901 (2008). https://doi.org/10.1103/PhysRevC.77.054901https://doi.org/10.1103/PhysRevC.77.054901
L. Adamczyk, et al., Centrality and transverse momentum dependence of elliptic flow of multistrange hadrons and φ meson in Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 116, 062301 (2016). https://doi.org/10.1103/PhysRevLett.116.062301https://doi.org/10.1103/PhysRevLett.116.062301
R. Esha, M. Nasim, H.Z. Huang, Insight from elliptic flow of open charm mesons using quark coalescence model at RHIC and LHC energies. J. Phys. 44, 045109 (2017). https://doi.org/10.1088/1361-6471/aa5f02https://doi.org/10.1088/1361-6471/aa5f02
D. Molnar, S.A. Voloshin, Elliptic flow at large transverse momenta from quark coalescence. Phys. Rev. Lett. 91, 092301 (2003). https://doi.org/10.1103/PhysRevLett.91.092301https://doi.org/10.1103/PhysRevLett.91.092301
V. Greco, C.M. Ko, R. Rapp, Quark coalescence for charmed mesons in ultrarelativistic heavy ion collisions. Phys. Lett. 595, 202-208 (2004). https://doi.org/10.1016/j.physletb.2004.06.064https://doi.org/10.1016/j.physletb.2004.06.064
Y. Oh, C.M. Ko, S.H. Lee, et al., Heavy baryon/meson ratios in relativistic heavy ion collisions. Phys. Rev. 79, 044905 (2009). https://doi.org/10.1103/PhysRevC.79.044905https://doi.org/10.1103/PhysRevC.79.044905
J. Zhao, S. Shi, N. Xu, et al., Sequential Coalescence with Charm Conservation in High Energy Nuclear Collisions. arXiv:1805.10858
S. Plumari, V. Minissale, S.K. Das, et al., Charmed Hadrons from Coalescence plus Fragmentation in relativistic nucleus-nucleus collisions at RHIC and LHC. Eur. Phys. J. 78, 348 (2018). https://doi.org/10.1140/epjc/s10052-018-5828-7https://doi.org/10.1140/epjc/s10052-018-5828-7
M. He, R.J. Fries, R. Rapp, Ds-Meson as Quantitative Probe of Diffusion and Hadronization in Nuclear Collisions. Phys. Rev. Lett. 110, 112301 (2013). https://doi.org/10.1103/PhysRevLett.110.112301https://doi.org/10.1103/PhysRevLett.110.112301
M. He, R. Rapp, Hadronization and Charm-Hadron Ratios in Heavy-Ion Collisions. Phys. Rev. Lett. 124, 042301 (2020). https://doi.org/10.1103/PhysRevLett.124.042301https://doi.org/10.1103/PhysRevLett.124.042301
S. Wheaton, J. Cleymans, THERMUS: A Thermal model package for ROOT. Comput. Phys. Commun. 180, 84-106 (2009). https://doi.org/10.1016/j.cpc.2008.08.001https://doi.org/10.1016/j.cpc.2008.08.001
G. Agakishiev, et al., Strangeness Enhancement in Cu+Cu and Au+Au Collisions at GeV. Phys. Rev. Lett. 108, 072301 (2012). https://doi.org/10.1103/PhysRevLett.108.072301https://doi.org/10.1103/PhysRevLett.108.072301
B.I. Abelev, et al., Identified baryon and meson distributions at large transverse momenta from Au+Au collisions at = 200-GeV. Phys. Rev. Lett. 97, 152301 (2006). https://doi.org/10.1103/PhysRevLett.97.152301https://doi.org/10.1103/PhysRevLett.97.152301
P. Skands, S. Carrazza, J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune. Eur. Phys. J. 74, 3024 (2014). https://doi.org/10.1140/epjc/s10052-014-3024-yhttps://doi.org/10.1140/epjc/s10052-014-3024-y
C. Bierlich, J.R. Christiansen, Effects of color reconnection on hadron flavor observables. Phys. Rev. 92, 094010 (2015). https://doi.org/10.1103/PhysRevD.92.094010https://doi.org/10.1103/PhysRevD.92.094010
G. Xie, Measurements of open charm hadron production in Au+Au Collisions at = 200 GeV at STAR. PoS 2018, 142 (2018). https://doi.org/10.22323/1.345.0142https://doi.org/10.22323/1.345.0142
X. Chen, Measurements of open bottom hadron production via displaced J/ψ, D0 and electrons in Au+Au collisions at = 200 GeV at STAR. PoS 2018, 158 (2018). https://doi.org/10.22323/1.345.0158https://doi.org/10.22323/1.345.0158
S. Zhang, Open bottom production in Au Au collisions at = 200 GeV with the STAR experiment. MDPI Proc. 10, 39 (2019). https://doi.org/10.3390/proceedings2019010039https://doi.org/10.3390/proceedings2019010039
S. Zhang, Open bottom production in Au+Au collisions at = 200 GeV with the STAR experiment. Int. J. Mod. Phys. Conf. Ser. 46, 1860014 (2018). https://doi.org/10.1142/S2010194518600145https://doi.org/10.1142/S2010194518600145
S. Cao, G.Y. Qin, S.A. Bass, Energy loss, hadronization and hadronic interactions of heavy flavors in relativistic heavy-ion collisions. Phys. Rev. 92, 024907 (2015). https://doi.org/10.1103/PhysRevC.92.024907https://doi.org/10.1103/PhysRevC.92.024907
F. Si, X.L. Chen, L. Zhou, et al., Charm and beauty isolation from heavy flavor decay electrons in Au+Au collisions at = 200 GeV at RHIC. Phys. Lett. B 805, 135465 (2020). https://doi.org/10.1016/j.physletb.2020.135465https://doi.org/10.1016/j.physletb.2020.135465
J. Adam, et al., J/ψ production cross section and its dependence on charged-particle multiplicity in p+p collisions at = 200 GeV. Phys. Lett. 786, 87-93 (2018). https://doi.org/10.1016/j.physletb.2018.09.029https://doi.org/10.1016/j.physletb.2018.09.029
L. Adamczyk, et al., J/ψ production at high transverse momenta in p+p and Au+Au collisions at GeV. Phys. Lett. 722, 55-62 (2013). https://doi.org/10.1016/j.physletb.2013.04.010https://doi.org/10.1016/j.physletb.2013.04.010
L. Adamczyk, et al., J/ψ production at low transverse momentum in p+p and d+Au collisions at = 200 GeV. Phys. Rev. 93, 064904 (2016). https://doi.org/10.1103/PhysRevC.93.064904https://doi.org/10.1103/PhysRevC.93.064904
A. Adare, et al., Transverse momentum dependence of J/ψ polarization at midrapidity in p+p collisions at = 200-GeV. Phys. Rev. 82, 012001 (2010). https://doi.org/10.1103/PhysRevD.82.012001https://doi.org/10.1103/PhysRevD.82.012001
A.D. Frawley, T. Ullrich, R. Vogt, Heavy flavor in heavy-ion collisions at RHIC and RHIC II. Phys. Rept. 462, 125-175 (2008). https://doi.org/10.1016/j.physrep.2008.04.002https://doi.org/10.1016/j.physrep.2008.04.002
Y.Q. Ma, K. Wang, K.T. Chao, A complete NLO calculation of the J/ψ and ψ’ production at hadron colliders. Phys. Rev. 84, 114001 (2011). https://doi.org/10.1103/PhysRevD.84.114001https://doi.org/10.1103/PhysRevD.84.114001
M. Butenschoen, B.A. Kniehl, J/ψ polarization at Tevatron and LHC: Nonrelativistic-QCD factorization at the crossroads. Phys. Rev. Lett. 108, 172002 (2012). https://doi.org/10.1103/PhysRevLett.108.172002https://doi.org/10.1103/PhysRevLett.108.172002
Y.Q. Ma, R. Venugopalan, Comprehensive description of J/ψ production in proton-proton collisions at collider energies. Phys. Rev. Lett. 113, 192301 (2014). https://doi.org/10.1103/PhysRevLett.113.192301https://doi.org/10.1103/PhysRevLett.113.192301
J. Adam, et al., Measurements of the transverse-momentum-dependent cross sections of J/ψ production at mid-rapidity in proton+proton collisions at 510 and 500 GeV with the STAR detector. Phys. Rev. 100, 052009 (2019). https://doi.org/10.1103/PhysRevD.100.052009https://doi.org/10.1103/PhysRevD.100.052009
Y.Q. Ma, R. Vogt, Quarkonium production in an improved color evaporation model. Phys. Rev. 94, 114029 (2016). https://doi.org/10.1103/PhysRevD.94.114029https://doi.org/10.1103/PhysRevD.94.114029
A. Adare, et al., Measurement of the relative yields of to mesons produced at forward and backward rapidity in p+p, p+Al, p+Au, and He Au collisions at GeV. Phys. Rev. 95, 034904 (2017). https://doi.org/10.1103/PhysRevC.95.034904https://doi.org/10.1103/PhysRevC.95.034904
M. Tanabashi, et al., Review of Particle Physics. Phys. Rev. 98, 030001 (2018). And 2019 update. https://doi.org/10.1103/PhysRevD.98.030001https://doi.org/10.1103/PhysRevD.98.030001
C. Aidala, et al., Measurements of B→J/ψ at forward rapidity in p+p collisions at GeV. Phys. Rev. 95, 092002 (2017). https://doi.org/10.1103/PhysRevD.95.092002https://doi.org/10.1103/PhysRevD.95.092002
A. Adare, et al., Ground and excited charmonium state production in p+p collisions at GeV. Phys. Rev. 85, 092004 (2012). https://doi.org/10.1103/PhysRevD.85.092004https://doi.org/10.1103/PhysRevD.85.092004
R. Aaij, et al., Measurement of the ratio of prompt χc to J/ψ production in pp collisions at TeV. Phys. Lett. 718, 431-440 (2012). https://doi.org/10.1016/j.physletb.2012.10.068https://doi.org/10.1016/j.physletb.2012.10.068
J.P. Lansberg, New Observables in Inclusive Production of Quarkonia. arXiv:1903.09185
A. Adare, et al., Angular decay coefficients of J/ψ mesons at forward rapidity from p+p collisions at GeV. Phys. Rev. 95, 092003 (2017). https://doi.org/10.1103/PhysRevD.95.092003https://doi.org/10.1103/PhysRevD.95.092003
Z. Liu, Quarkonium measurements in heavy-ion collisions at = 200 GeV with the STAR experiment. PoS 2018, 161 (2018). https://doi.org/10.22323/1.345.0161https://doi.org/10.22323/1.345.0161
H.S. Chung, S. Kim, J. Lee, et al., Polarization of prompt J/ψ in pp→J/ψ+X at GeV. Phys. Rev. 83, 037501 (2011). https://doi.org/10.1103/PhysRevD.83.037501https://doi.org/10.1103/PhysRevD.83.037501
H.S. Shao, H. Han, Y.Q. Ma, et al., Yields and polarizations of prompt J/ψ and ψ(2S) production in hadronic collisions. JHEP 05, 103 (2015). https://doi.org/10.1007/JHEP05(2015)103https://doi.org/10.1007/JHEP05(2015)103
H.F. Zhang, Z. Sun, W.L. Sang, et al., Impact of ηc hadroproduction data on charmonium production and polarization within NRQCD framework. Phys. Rev. Lett. 114, 092006 (2015). https://doi.org/10.1103/PhysRevLett.114.092006https://doi.org/10.1103/PhysRevLett.114.092006
B. Gong, L.P. Wan, J.X. Wang, et al., Polarization for prompt J/ψ and ψ(2S) production at the tevatron and LHC. Phys. Rev. Lett. 110, 042002 (2013). https://doi.org/10.1103/PhysRevLett.110.042002https://doi.org/10.1103/PhysRevLett.110.042002
A. Adare, et al., production in d+Au and p+p collisions at GeV and cold-nuclear matter effects. Phys. Rev. 87, 044909 (2013). https://doi.org/10.1103/PhysRevC.87.044909https://doi.org/10.1103/PhysRevC.87.044909
W. Zha, C. Yang, B. Huang, et al., Systematic study of the experimental measurements on ratios of different Y states. Phys. Rev. 88, 067901 (2013). https://doi.org/10.1103/PhysRevC.88.067901https://doi.org/10.1103/PhysRevC.88.067901
L. Kosarzewski, Measurement of Y production in p+p collisions at = 500 GeV in the STAR experiment. J. Phys. Conf. Ser. 612, 012022 (2015). https://doi.org/10.1088/1742-6596/612/1/012022https://doi.org/10.1088/1742-6596/612/1/012022
F. Shen, S. Wang, F. Kong, et al., MWPC prototyping and performance test for the STAR inner TPC upgrade. Nucl. Instrum. Meth. 896, 90-95 (2018). https://doi.org/10.1016/j.nima.2018.04.019https://doi.org/10.1016/j.nima.2018.04.019
B. Alessandro, et al., J/ψ and ψ’ production and their normal nuclear absorption in proton nucleus collisions at 400 GeV. Eur. Phys. J. 48, 329 (2006). https://doi.org/10.1140/epjc/s10052-006-0079-4https://doi.org/10.1140/epjc/s10052-006-0079-4
R. Arnaldi, J/ψ suppression in p-A and In-In collisions. J. Phys.G: Nucl. Part. Phys. 35, 104133 (2008). https://doi.org/10.1088/0954-3899/35/10/104133https://doi.org/10.1088/0954-3899/35/10/104133
L. Kluberg, H. Satz, in Relativistic Heavy Ion Physics, Color deconfinement and charmonium production in nuclear collisions, in Relativistic Heavy Ion Physics (2010). https://doi.org/10.1007/978-3-642-01539-7_13https://doi.org/10.1007/978-3-642-01539-7_13
A. Adare, et al., J/ψ production vs centrality, transverse momentum, and rapidity in Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 98, 232301 (2007). https://doi.org/10.1103/PhysRevLett.98.232301https://doi.org/10.1103/PhysRevLett.98.232301
M.C. Abreu, et al., J / psi, psi-prime and Drell-Yan production in S U interactions at 200-GeV per nucleon. Phys. Lett. 449, 128-136 (1999). https://doi.org/10.1016/S0370-2693(99)00057-Xhttps://doi.org/10.1016/S0370-2693(99)00057-X
P. Braun-Munzinger, J. Stachel, (Non)thermal aspects of charmonium production and a new look at J/ψ suppression. Phys. Lett. 490, 196-202 (2000). https://doi.org/10.1016/S0370-2693(00)00991-6https://doi.org/10.1016/S0370-2693(00)00991-6
A. Andronic, P. Braun-Munzinger, K. Redlich, et al., Statistical hadronization of charm in heavy-ion collisions at SPS, RHIC and LHC. Phys. Lett. 571, 36-44 (2003). https://doi.org/10.1016/j.physletb.2003.07.066https://doi.org/10.1016/j.physletb.2003.07.066
L. Grandchamp, R. Rapp, Thermal versus direct J/ψ production in ultrarelativistic heavy-ion collisions. Phys. Lett. 523, 60-66 (2001). https://doi.org/10.1016/S0370-2693(01)01311-9https://doi.org/10.1016/S0370-2693(01)01311-9
R.L. Thews, M. Schroedter, J. Rafelski, Enhanced J/ψ production in deconfined quark matter. Phys. Rev. 63, 054905 (2001). https://doi.org/10.1103/PhysRevC.63.054905https://doi.org/10.1103/PhysRevC.63.054905
M.I. Gorenstein, A.P. Kostyuk, L. McLerran, et al., Open and hidden charm production in heavy-ion collisions at ultrarelativistic energies. J. Phys. 28, 2151-2167 (2002). https://doi.org/10.1088/0954-3899/28/8/302https://doi.org/10.1088/0954-3899/28/8/302
M.L. Mangano, P. Nason, G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order. Nucl. Phys. 373, 295-345 (1992). https://doi.org/10.1016/0550-3213(92)90435-Ehttps://doi.org/10.1016/0550-3213(92)90435-E
L. Adamczyk, et al., Energy dependence of J/ψ production in Au+Au collisions at 39, 62.4 and 200 GeV. Phys. Lett. 771, 13-20 (2017). https://doi.org/10.1016/j.physletb.2017.04.078https://doi.org/10.1016/j.physletb.2017.04.078
W. Zha, B. Huang, R. Ma, et al., Systematic study of the experimental measurements on J/ψ cross sections and kinematic distributions in p+p collisions at different energies. Phys. Rev. 93, 024919 (2016). https://doi.org/10.1103/PhysRevC.93.024919https://doi.org/10.1103/PhysRevC.93.024919
A. Adare, et al., J/ψ suppression at forward rapidity in Au+Au collisions at and 62.4 GeV. Phys. Rev. 86, 064901 (2012). https://doi.org/10.1103/PhysRevC.86.064901https://doi.org/10.1103/PhysRevC.86.064901
X. Zhao, R. Rapp, Charmonium in medium: From correlators to experiment. Phys. Rev. 82, 064905 (2010).
B. Trzeciak, C. Da Silva, E.G. Ferreiro, et al., Heavy-ion physics at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC): Feasibility studies for quarkonium and Drell-Yan production. Few Body Syst. 58, 148 (2017). https://doi.org/10.1007/s00601-017-1308-0https://doi.org/10.1007/s00601-017-1308-0
A. Adare, et al., J/ψ Production in = 200 GeV Cu+Cu Collisions. Phys. Rev. Lett. 101, 122301 (2008). https://doi.org/10.1103/PhysRevLett.101.122301https://doi.org/10.1103/PhysRevLett.101.122301
C. Aidala, et al., Nuclear matter effects on J/ψ production in asymmetric Cu+Au collisions at = 200 GeV. Phys. Rev. 90, 064908 (2014). https://doi.org/10.1103/PhysRevC.90.064908https://doi.org/10.1103/PhysRevC.90.064908
K.J. Eskola, V.J. Kolhinen, P.V. Ruuskanen, Scale evolution of nuclear parton distributions. Nucl. Phys. 535, 351-371 (1998). https://doi.org/10.1016/S0550-3213(98)00589-6https://doi.org/10.1016/S0550-3213(98)00589-6
D. de Florian, R. Sassot, Nuclear parton distributions at next-to-leading order. Phys. Rev. 69, 074028 (2004). https://doi.org/10.1103/PhysRevD.69.074028https://doi.org/10.1103/PhysRevD.69.074028
K.J. Eskola, H. Paukkunen, C.A. Salgado, EPS09: A new generation of NLO and LO nuclear parton distribution functions. JHEP 04, 065 (2009). https://doi.org/10.1088/1126-6708/2009/04/065https://doi.org/10.1088/1126-6708/2009/04/065
A. Adare, et al., Forward J/ψ production in U+U collisions at =193 GeV. Phys. Rev. 93, 034903 (2016). https://doi.org/10.1103/PhysRevC.93.034903https://doi.org/10.1103/PhysRevC.93.034903
H. Masui, B. Mohanty, N. Xu, Predictions of elliptic flow and nuclear modification factor from 200 GeV U + U collisions at RHIC. Phys. Lett. 679, 440-444 (2009). https://doi.org/10.1016/j.physletb.2009.08.025https://doi.org/10.1016/j.physletb.2009.08.025
Q.Y. Shou, Y.G. Ma, P. Sorensen, et al., Parameterization of deformed nuclei for glauber modeling in relativistic heavy ion collisions. Phys. Lett. 749, 215-220 (2015). https://doi.org/10.1016/j.physletb.2015.07.078https://doi.org/10.1016/j.physletb.2015.07.078
J. Adam, et al., Measurement of inclusive J/ψ suppression in Au+Au collisions at = 200 GeV through the dimuon channel at STAR. Phys. Lett. 797, 134917 (2019). https://doi.org/10.1016/j.physletb.2019.134917https://doi.org/10.1016/j.physletb.2019.134917
M.J. Leitch, et al., Measurement of differences between J/ψ and ψ’ suppression in p-A collisions. Phys. Rev. Lett. 84, 3256-3260 (2000). https://doi.org/10.1103/PhysRevLett.84.3256https://doi.org/10.1103/PhysRevLett.84.3256
I. Abt, et al., Kinematic distributions and nuclear effects of J/psi production in 920-GeV fixed-target proton-nucleus collisions. Eur. Phys. J. 60, 525-542 (2009). https://doi.org/10.1140/epjc/s10052-009-0965-7https://doi.org/10.1140/epjc/s10052-009-0965-7
A. Adare, et al., Transverse-Momentum Dependence of the J/ψ Nuclear Modification in d+Au Collisions at GeV. Phys. Rev. 87, 034904 (2013). https://doi.org/10.1103/PhysRevC.87.034904https://doi.org/10.1103/PhysRevC.87.034904
U.A. Acharya, et al., Measurement of at forward and backward rapidity in p+p, p+Al, p+Au, and He+Au collisions at . arXiv:1910.14487
T. Todoroki, Measurements of charmonium production in p+p, p+Au, and Au+Au collisions at = 200 GeV with the STAR experiment. Nucl. Phys. 967, 572-575 (2017). https://doi.org/10.1016/j.nuclphysa.2017.04.020https://doi.org/10.1016/j.nuclphysa.2017.04.020
Y.p. Liu, Z. Qu, N. Xu, et al., J/ψ Transverse momentum distribution in high energy nuclear collisions at RHIC. Phys. Lett. 678, 72-76 (2009). And private communication. https://doi.org/10.1016/j.physletb.2009.06.006https://doi.org/10.1016/j.physletb.2009.06.006
Y. Liu, N. Xu, P. Zhuang, Velocity dependence of charmonium dissociation temperature in high-energy nuclear collisions. Phys. Lett. 724, 73-76 (2013). https://doi.org/10.1016/j.physletb.2013.05.068https://doi.org/10.1016/j.physletb.2013.05.068
H. Liu, K. Rajagopal, U.A. Wiedemann, An AdS/CFT calculation of screening in a hot wind. Phys. Rev. Lett. 98, 182301 (2007). https://doi.org/10.1103/PhysRevLett.98.182301https://doi.org/10.1103/PhysRevLett.98.182301
B.I. Abelev, et al., J/psi production at high transverse momentum in p+p and Cu+Cu collisions at = 200 GeV. Phys. Rev. 80, 041902 (2009). https://doi.org/10.1103/PhysRevC.80.041902https://doi.org/10.1103/PhysRevC.80.041902
L. Adamczyk, et al., J/ψ production at low pT in Au + Au and Cu + Cu collisions at GeV with the STAR detector. Phys. Rev. 90, 024906 (2014). https://doi.org/10.1103/PhysRevC.90.024906https://doi.org/10.1103/PhysRevC.90.024906
J. Adam, et al., Inclusive, prompt and non-prompt J/ψ production at mid-rapidity in Pb-Pb collisions at = 2.76 TeV. JHEP 07, 051 (2015). https://doi.org/10.1007/JHEP07(2015)051https://doi.org/10.1007/JHEP07(2015)051
V. Khachatryan, et al., Suppression and azimuthal anisotropy of prompt and nonprompt J/ψ production in PbPb collisions at Tev. Eur. Phys. J. 77, 252 (2017). https://doi.org/10.1140/epjc/s10052-017-4781-1https://doi.org/10.1140/epjc/s10052-017-4781-1
R. Sharma, I. Vitev, High transverse momentum quarkonium production and dissociation in heavy ion collisions. Phys. Rev. 87, 044905 (2013). https://doi.org/10.1103/PhysRevC.87.044905https://doi.org/10.1103/PhysRevC.87.044905
E. Schnedermann, U.W. Heinz, Relativistic hydrodynamics in a global fashion. Phys. Rev. 47, 1738-1750 (1993). https://doi.org/10.1103/PhysRevC.47.1738https://doi.org/10.1103/PhysRevC.47.1738
L. Adamczyk, et al., Measurement of J/ψ azimuthal anisotropy in Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 111, 052301 (2013). https://doi.org/10.1103/PhysRevLett.111.052301https://doi.org/10.1103/PhysRevLett.111.052301
X. Zhao, R. Rapp, Charmonium Production at High pt at RHIC. arXiv:0806.1239
Y. Liu, N. Xu, P. Zhuang, J/ψ elliptic flow in relativistic heavy ion collisions. Nucl. Phys. 834, 317c-319c (2010). https://doi.org/10.1016/j.nuclphysa.2010.01.008https://doi.org/10.1016/j.nuclphysa.2010.01.008
U.W. Heinz, C. Shen. private communication
Z. Tang, L. Yi, L. Ruan, et al., Statistical origin of Constituent-Quark scaling in the QGP hadronization. Chin. Phys. Lett. 30, 031101 (2011). arXiv:arXiv:1101.1912
C.A. Bertulani, S.R. Klein, J. Nystrand, Physics of ultra-peripheral nuclear collisions. Ann. Rev. Nucl. Part. Sci. 55, 271-310 (2005). https://doi.org/10.1146/annurev.nucl.55.090704.151526https://doi.org/10.1146/annurev.nucl.55.090704.151526
F. Krauss, M. Greiner, G. Soff, Photon and gluon induced processes in relativistic heavy ion collisions. Prog. Part. Nucl. Phys. 39, 503-564 (1997). https://doi.org/10.1016/S0146-6410(97)00049-5https://doi.org/10.1016/S0146-6410(97)00049-5
S. Afanasiev, et al., Photoproduction of J/ψ and of high mass e+e- in ultra-peripheral Au+Au collisions at = 200-GeV. Phys. Lett. 679, 321-329 (2009). https://doi.org/10.1016/j.physletb.2009.07.061https://doi.org/10.1016/j.physletb.2009.07.061
B. Abelev, et al., Coherent J/ψ photoproduction in ultra-peripheral Pb-Pb collisions at TeV. Phys. Lett. 718, 1273-1283 (2013). https://doi.org/10.1016/j.physletb.2012.11.059https://doi.org/10.1016/j.physletb.2012.11.059
E. Abbas, et al., Charmonium and e+e- pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at =2.76 TeV. Eur. Phys. J. 73, 2617 (2013). https://doi.org/10.1140/epjc/s10052-013-2617-1https://doi.org/10.1140/epjc/s10052-013-2617-1
V. Khachatryan, et al., Coherent J/ψ photoproduction in ultra-peripheral PbPb collisions at 2.76 TeV with the CMS experiment. Phys. Lett. 772, 489-511 (2017). https://doi.org/10.1016/j.physletb.2017.07.001https://doi.org/10.1016/j.physletb.2017.07.001
V. Guzey, M. Zhalov, Exclusive J/ψ production in ultraperipheral collisions at the LHC: constrains on the gluon distributions in the proton and nuclei. JHEP 10, 207 (2013). https://doi.org/10.1007/JHEP10(2013)207https://doi.org/10.1007/JHEP10(2013)207
J. Adam, et al., Measurement of an excess in the yield of J/ψ at very low pT in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. Lett. 116, 222301 (2016). https://doi.org/10.1103/PhysRevLett.116.222301https://doi.org/10.1103/PhysRevLett.116.222301
J. Adam, et al., Low- pair production in Au+Au collisions at = 200 GeV and U+U collisions at = 193 GeV at STAR. Phys. Rev. Lett. 121, 132301 (2018). https://doi.org/10.1103/PhysRevLett.121.132301https://doi.org/10.1103/PhysRevLett.121.132301
M. Kłusek-Gawenda, A. Szczurek, Photoproduction of J/ψ mesons in peripheral and semicentral heavy ion collisions. Phys. Rev. 93, 044912 (2016). https://doi.org/10.1103/PhysRevC.93.044912https://doi.org/10.1103/PhysRevC.93.044912
W. Zha, S.R. Klein, R. Ma, et al., Coherent J/ψ photoproduction in hadronic heavy-ion collisions. Phys. Rev. 97, 044910 (2018). https://doi.org/10.1103/PhysRevC.97.044910https://doi.org/10.1103/PhysRevC.97.044910
W. Zha, L. Ruan, Z. Tang, et al., Coherent photo-produced J/ψ and dielectron yields in isobaric collisions. Phys. Lett. 789, 238-242 (2019). https://doi.org/10.1016/j.physletb.2018.12.041https://doi.org/10.1016/j.physletb.2018.12.041
W. Shi, W. Zha, B. Chen, Charmonium Coherent Photoproduction and Hadroproduction with Effects of Quark Gluon Plasma. Phys. Lett. 777, 399-405 (2018). https://doi.org/10.1016/j.physletb.2017.12.055https://doi.org/10.1016/j.physletb.2017.12.055
W. Zha, L. Ruan, Z. Tang, et al., Coherent lepton pair production in hadronic heavy ion collisions. Phys. Lett. 781, 182-186 (2018). https://doi.org/10.1016/j.physletb.2018.04.006https://doi.org/10.1016/j.physletb.2018.04.006
S.R. Klein, Two-photon production of dilepton pairs in peripheral heavy ion collisions. Phys. Rev. 97, 054903 (2018). https://doi.org/10.1103/PhysRevC.97.054903https://doi.org/10.1103/PhysRevC.97.054903
M. Klusek-Gawenda, et al., Dilepton Radiation in Heavy-Ion Collisions at Small Transverse Momentum. arXiv:1809.07049
J. Adam, et al., Observation of excess J/ψ yield at very low transverse momenta in Au+Au collisions at 200 GeV and U+U collisions at 193 GeV. Phys. Rev. Lett. 123, 132302 (2019). https://doi.org/10.1103/PhysRevLett.123.132302https://doi.org/10.1103/PhysRevLett.123.132302
B.I. Abelev, et al., ρ0 photoproduction in ultraperipheral relativistic heavy ion collisions at = 200 GeV. Phys. Rev. 77, 034910 (2008). https://doi.org/10.1103/PhysRevC.77.034910https://doi.org/10.1103/PhysRevC.77.034910
S.R. Klein, J. Nystrand, Interference in exclusive vector meson production in heavy ion collisions. Phys. Rev. Lett. 84, 2330-2333 (2000). https://doi.org/10.1103/PhysRevLett.84.2330https://doi.org/10.1103/PhysRevLett.84.2330
B.I. Abelev, et al., Observation of two-source interference in the photoproduction reaction Au Au —> Au Au rho0. Phys. Rev. Lett. 102, 112301 (2009). https://doi.org/10.1103/PhysRevLett.102.112301https://doi.org/10.1103/PhysRevLett.102.112301
X. Du, R. Rapp, M. He, Color Screening and Regeneration of Bottomonia in High-Energy Heavy-Ion Collisions. Phys. Rev. 96, 054901 (2017). https://doi.org/10.1103/PhysRevC.96.054901https://doi.org/10.1103/PhysRevC.96.054901
Z. Ye, Y measurements in p+p, p+Au and Au+Au collisions at = 200GeV with the STAR experiment. Nucl. Phys. 967, 600-603 (2017). https://doi.org/10.1016/j.nuclphysa.2017.06.040https://doi.org/10.1016/j.nuclphysa.2017.06.040
L. Adamczyk, et al., Suppression of Y production in d+Au and Au+Au collisions at =200 GeV. Phys. Lett. 735, 127-137 (2014). [Erratum: Phys. Lett.B743,537(2015)]. arXiv:1312.3675, https://doi.org/10.1016/j.physletb.2014.06.028https://doi.org/10.1016/j.physletb.2014.06.028, https://doi.org/10.1016/j.physletb.2015.01.046https://doi.org/10.1016/j.physletb.2015.01.046
F. Arleo, S. Peigne, Heavy-quarkonium suppression in p-A collisions from parton energy loss in cold QCD matter. JHEP 03, 122 (2013). https://doi.org/10.1007/JHEP03(2013)122https://doi.org/10.1007/JHEP03(2013)122
P. Wang, Y measurements in Au+Au collisions at 200GeV with the STAR experiment. Nucl. Phys. 982, 723-726 (2019). https://doi.org/10.1016/j.nuclphysa.2018.09.025https://doi.org/10.1016/j.nuclphysa.2018.09.025
V. Khachatryan, et al., Suppression of Y(1S),Y(2S) and Y(3S) production in PbPb collisions at = 2.76 TeV. Phys. Lett. 770, 357-379 (2017). https://doi.org/10.1016/j.physletb.2017.04.031https://doi.org/10.1016/j.physletb.2017.04.031
B. Krouppa, A. Rothkopf, M. Strickland, Bottomonium suppression using a lattice QCD vetted potential. Phys. Rev. 97, 016017 (2018). https://doi.org/10.1103/PhysRevD.97.016017https://doi.org/10.1103/PhysRevD.97.016017
G. Roland, The sPHENIX experiment at RHIC. PoS 2018, 013 (2019). https://doi.org/10.22323/1.345.0013https://doi.org/10.22323/1.345.0013
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构