1.INPAC and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2.Shanghai Laboratory for Particle and Cosmology, Shanghai 200240, China
3.Columbia Astrophysics Lab and Physics Department, Columbia University, New York, NY 10027, USA
4.Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
Corresponding author, yz2614@columbia.edu.
Scan for full text
Karl Ludwig Giboni, Pratibha Juyal, Elena Aprile, 等. A LN2 based cooling system for a next generation liquid xenon dark matter detector[J]. 核技术(英文版), 2020,31(8):76
Karl Ludwig Giboni, Pratibha Juyal, Elena Aprile, et al. A LN2 based cooling system for a next generation liquid xenon dark matter detector[J]. Nuclear Science and Techniques, 2020,31(8):76
Karl Ludwig Giboni, Pratibha Juyal, Elena Aprile, 等. A LN2 based cooling system for a next generation liquid xenon dark matter detector[J]. 核技术(英文版), 2020,31(8):76 DOI: 10.1007/s41365-020-00786-7.
Karl Ludwig Giboni, Pratibha Juyal, Elena Aprile, et al. A LN2 based cooling system for a next generation liquid xenon dark matter detector[J]. Nuclear Science and Techniques, 2020,31(8):76 DOI: 10.1007/s41365-020-00786-7.
In recent years cooling technology for Liquid Xenon (LXe) detectors has advanced driven by the development of Dark Matter (DM) detectors with target mass in the 100 – 1000 kg range. The next generation of DM detectors based on LXe will be in the 50000 kg (50 t) range requiring more than 1 kW of cooling power. Most of the prior cooling methods become impractical at this level. For cooling a 50 t scale LXe detector, a method is proposed in which Liquid Nitrogen (LN2) in a small local reservoir cools the xenon gas via a cold finger. The cold finger incorporates a heating unit to provide temperature regulation.,The proposed cooling method is simple, reliable, and suitable for the required long-term operation for a rare event search. The device can be easily integrated into present cooling systems, e.g. the 'Cooling Bus’ employed for the PandaX I and II experiments. It is still possible to cool indirectly with no part of the cooling or temperature control system getting in direct contact with the clean xenon in the detector. Also the cooling device can be mounted at a large distance, i.e. the detector is cooled remotely from a distance of 5 – 10 m. The method was tested in a laboratory setup at Columbia University to carry out different measurements with a small LXe detector and behaved exactly as predicted.
Noble liquid detectors (scintillation ionization double-phase)Dark Matter detectors (WIMPs axions etc.)Large detector systems for particle and astroparticle physicsVery low-energy charged particle detectorsTime projection chambersCryogenicsDetector cooling and thermo-stabilization
E. Aprile, J. Aalbers, F. Agostini, et al. (XENON Collaboration), The XENON1T dark matter experiment. Eur. Phys. J. C, 77.12: 881 (2017). https://doi.org/10.1140/epjc/s10052-017-5326-3https://doi.org/10.1140/epjc/s10052-017-5326-3
X. Cui, A. Abdukerim, W. Chen, et al. (PandaX-II Collaboration), Dark matter results from 54-ton-day exposure of PandaX-II experiment. Phys. Rev. Lett., 119, 181302 (2017). https://doi.org/10.1103/PhysRevLett.119.181302https://doi.org/10.1103/PhysRevLett.119.181302
E. Aprile, J. Aalbers, F. Agostini, et al. (XENON Collaboration), Physics reach of the XENON1T dark matter experiment. J. Cosmol. Astropart. Phys., 04: 027 (2016). https://dx.doi.org/10.1088/1475-7516/2016/04/027https://dx.doi.org/10.1088/1475-7516/2016/04/027
D. S. Akerib, C. W. Akerlof, D. Yu. Akimov, et al. (LZ Collaboration), LUX-ZEPLIN (LZ) conceptual design report. (2015) https://arxiv.org/abs/1509.02910https://arxiv.org/abs/1509.02910 [physics.ins-det]
B. J. Mount, S. Hans, R. Rosero, et al. (LZ Collaboration), The LUX-ZEPLIN (LZ) technical design report (2017). https://arxiv.org/abs/1703.09144https://arxiv.org/abs/1703.09144 [physics.ins-det]
J. Liu, X. Chen, and X. Ji, Dark matter direct search sensitivity of the PandaX-4T experiment. Sci. China. Phys. Mech. Astron., 62.3: 31011 (2019). https://doi.org/10.1007/s11433-018-9259-0https://doi.org/10.1007/s11433-018-9259-0
J. Aalbers, F. Agostini, M. Alfonsic, et al. (DARWIN Collaboration), DARWIN: towards the ultimate dark matter detector. J. Cosmol. Astropart. Phys., 11: 017 (2016). https://dx.doi.org/10.1088/1475-7516/2016/11/017https://dx.doi.org/10.1088/1475-7516/2016/11/017
E. Aprile and T. Doke, Liquid xenon detectors for particle physics and astrophysics. Rev. Mod. Phys., 82, 2053 (2010). https://dx.doi.org/10.1103/RevModPhys.82.2053https://dx.doi.org/10.1103/RevModPhys.82.2053
K. Abe, K. Hieda, K. Hiraide, et al. (the XMASS Collaboration), XMASS detector. Nucl. Instrum. Methods Phys. Res. A, 716, 78-85 (2013). https://doi.org/10.1016/j.nima.2013.03.059https://doi.org/10.1016/j.nima.2013.03.059
E. Aprile, J. Angle, F. Arneodo, et al. (XENON Collaboration), Design and performance of the XENON10 dark matter experiment. Astropart. Phys., 34(9), 679-698 (2011). https://doi.org/10.1016/j.astropartphys.2011.01.006https://doi.org/10.1016/j.astropartphys.2011.01.006
E. Aprile, K. Arisaka, F. Arneodo, et al. (XENON100 Collaboration), The XENON100 dark matter experiment. Astropart. Phys., 35(9), 573-590 (2012). https://doi.org/10.1016/j.astropartphys.2012.01.003https://doi.org/10.1016/j.astropartphys.2012.01.003
X. Cao, X. Chen, Y. Chen, et al. (PandaX Collaboration), PandaX: a liquid xenon dark matter experiment at CJPL. Sci. China. Phys. Mech. Astron., 57(8), 1476-1494 (2014). https://doi.org/10.1007/s11433-014-5521-2https://doi.org/10.1007/s11433-014-5521-2
T. Haruyama, K. Kasami, H. Inoue, et al., Development of a High-Power Coaxial Pulse Tube Refrigerator for a Liquid Xenon Calorimeter. AIP Conf. Proc., 710(1), 1459 (2004). https://doi.org/10.1063/1.1774839https://doi.org/10.1063/1.1774839
D.S. Akerib, X. Bai, S. Bedikian, et al. (LUX Collaboration), The large underground xenon (LUX) experiment. Nucl. Instrum. Methods Phys. Res. A, 704, 111-126 (2013). https://doi.org/10.1016/j.nima.2012.11.135https://doi.org/10.1016/j.nima.2012.11.135
A. Bolozdynya, A. Bradley, S. Bryan, et al., Cryogenics for the LUX detector. IEEE Trans. Nucl. Sci., 56(4), 2309-2312 (2009). https://doi.org/10.1109/TNS.2009.2023443https://doi.org/10.1109/TNS.2009.2023443
E. Aprile and M. Suzuki, Development of liquid xenon detectors for gamma ray astronomy. IEEE Trans. Nucl. Sci., 36(1), 311-315 (1989). https://doi.org/10.1109/23.34455https://doi.org/10.1109/23.34455
E. Aprile, R. Mukherjee, and M. Suzuki, A study of the scintillation light induced in liquid xenon by electrons and alpha particles. IEEE Trans. Nucl. Sci., 37(2), 553-558 (1990). https://doi.org/10.1109/23.106676https://doi.org/10.1109/23.106676
Specially reinforced model of tube R8520 for pressures up to 10 bar; Hamamatsu Photonics, Hamamatsu, Japan. Website: https://www.hamamatsu.com/us/en/index.htmlhttps://www.hamamatsu.com/us/en/index.html. Accessed 18 May 2020
E. Aprile, U. G. Oberlack, A. Curioni, et al., Preliminary Results from the 1999 Balloon Flight of the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT). X-Ray and Gamma-Ray Instrumentation for Astronomy XI, Proc. SPIE, 4140, 344-359 (2000). https://doi.org/10.1117/12.409128https://doi.org/10.1117/12.409128
Model PC150 Pulse Tube Refrigerator; Iwatani Industrial Gases Corp, Japan. Website: http://www.iwatani.com/index.htmlhttp://www.iwatani.com/index.html. Accessed 18 May 2020.
T. Haruyama, K. Kasami, Y. Matsubara, et al., High-power pulse tube cryocooler for liquid xenon particle detectors. In Cryocoolers 13 (Springer, Boston, MA, 2005), pp. 689-694. https://doi.org/10.1007/0-387-27533-9_85https://doi.org/10.1007/0-387-27533-9_85
Model CP2870 helium compressor; Cryomech Inc, United States. Website: https://www.cryomech.com/https://www.cryomech.com/.
J. Adam, X. Bai, A. M. Baldini, et al. (MEG Collaboration), The MEG detector for μ+ e+γ decay search. Eur. Phys. J. C, 73.4, 2365 (2013). https://doi.org/10.1140/epjc/s10052-013-2365-2https://doi.org/10.1140/epjc/s10052-013-2365-2
H. Gong, K. L. Giboni, X. Ji, et al., The cryogenic system for the Panda-X dark matter search experiment. J. Instrum., 8(01), P01002 (2013). https://dx.doi.org/10.1088/1748-0221/8/01/P01002https://dx.doi.org/10.1088/1748-0221/8/01/P01002
K. L. Giboni, E. Aprile, B. Choi, et al., Xenon recirculation-purification with a heat exchanger. J. Instrum., 6(03), P03002 (2011). https://dx.doi.org/10.1088/1748-0221/6/03/P03002https://dx.doi.org/10.1088/1748-0221/6/03/P03002
A. M. M. Elsied, K. L. Giboni, and X. Ji, Alternative connection scheme for PMTs in large, low energy LXe detectors. J. Instrum., 10(01), T01003 (2015). https://dx.doi.org/10.1088/1748-0221/10/01/T01003https://dx.doi.org/10.1088/1748-0221/10/01/T01003
E. Aprile, K. L. Giboni, P. Majewski, et al., Scintillation response of liquid xenon to low energy nuclear recoils. Phys. Rev. D, 72(7), 072006 (2005). https://dx.doi.org/10.1103/PhysRevD.72.072006https://dx.doi.org/10.1103/PhysRevD.72.072006
E. Aprile, H. Contreras, L. W. Goetzke, et al., Measurements of proportional scintillation and electron multiplication in liquid xenon using thin wires. J. Instrum., 9(11), P11012 (2014). https://dx.doi.org/10.1088/1748-0221/9/11/P11012https://dx.doi.org/10.1088/1748-0221/9/11/P11012
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构