1.Department of Electronic Information and Physics, Changzhi University, Changzhi 046011, China
2.Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
Corresponding author, zhangfan@mail.bnu.edu.cn
Scan for full text
Fan Zhang, Jun Su. Probing neutron-proton effective mass splitting using nuclear stopping and isospin mix in heavy-ion collisions in GeV energy region[J]. 核技术(英文版), 2020,31(8):77
Fan Zhang, Jun Su. Probing neutron-proton effective mass splitting using nuclear stopping and isospin mix in heavy-ion collisions in GeV energy region[J]. Nuclear Science and Techniques, 2020,31(8):77
Fan Zhang, Jun Su. Probing neutron-proton effective mass splitting using nuclear stopping and isospin mix in heavy-ion collisions in GeV energy region[J]. 核技术(英文版), 2020,31(8):77 DOI: 10.1007/s41365-020-00787-6.
Fan Zhang, Jun Su. Probing neutron-proton effective mass splitting using nuclear stopping and isospin mix in heavy-ion collisions in GeV energy region[J]. Nuclear Science and Techniques, 2020,31(8):77 DOI: 10.1007/s41365-020-00787-6.
The ramifications of the effective mass splitting on the nuclear stopping and isospin tracer during heavy-ion collisions within the gigaelectron volt energy region are studied using an isospin-dependent quantum molecular dynamics model. Three isotope probes, i.e., a proton, deuteron, and triton, are used to calculate the nuclear stopping. Compared to the,, case, the ,, parameter results in a stronger stopping for protons but a weaker stopping for tritons. The calculations of the isospin tracer show that the ,, parameter results in a higher isospin mix than the ,, parameter. The rapidity and impact parameter dependences of the isospin tracer are also studied. A constraining of the effective mass splitting using the free nucleons with high rapidity and in a central rather than peripheral collision is suggested.
Neutron-proton effective mass splittingNuclear stoppingIsospin mix
H. A. Bethe, Supernova mechanisms. Rev. Mod. Phys. 62, 801 (1990). https://doi.org/10.1103/RevModPhys.62.801https://doi.org/10.1103/RevModPhys.62.801
A.W. Steiner, M. Prakash, J.M. Lattimer et al., Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 411, 325 (2005). https://doi.org/10.1016/j.physrep.2005.02.004https://doi.org/10.1016/j.physrep.2005.02.004
P. Danielewicz, R. Lacey, W.G. Lynch, Determination of the equation of state of dense matter. Science 298, 1592 (2002). https://doi.org/10.1126/science.1078070https://doi.org/10.1126/science.1078070
H.T. Janka, Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407 (2012). https://doi.org/10.1146/annurev-nucl-102711-094901https://doi.org/10.1146/annurev-nucl-102711-094901
T.Z. Yan, S. Li, Y.N. Wang et al., Yield ratios and directed flows of light particles from proton-rich nuclei-induced collisions. Nucl. Sci. Tech. 30, 15 (2019). https://doi.org/10.1007/s41365-018-0534-6https://doi.org/10.1007/s41365-018-0534-6
Byungsik Hong, Jung Keun Ahn, Gyeonghwan Bak et al., Development of large acceptance multi-purpose spectrometer in Korea for symmetry energy. Nucl. Sci. Tech. 29, 171 (2018). https://doi.org/10.1007/s41365-018-0507-9https://doi.org/10.1007/s41365-018-0507-9
B.-J. Cai, L.-W. Chen, Constraints on the skewness coefficient of symmetric nuclear matter within the nonlinear relativistic mean field model. Nucl. Sci. Tech. 28, 185 (2017). https://doi.org/10.1007/s41365-017-0329-1https://doi.org/10.1007/s41365-017-0329-1
C. Fuchs and H.H. Wolter, Modelization of the EOS. Eur. Phys. J. A 30, 5 (2006). https://doi.org/10.1140/epja/i2005-10313-xhttps://doi.org/10.1140/epja/i2005-10313-x
B. A. Li, L. W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rep. 464, 113 (2008). https://doi.org/10.1016/j.physrep.2008.04.005https://doi.org/10.1016/j.physrep.2008.04.005
V. Baran, M. Colonna, V. Greco et al., Reaction dynamics with exotic nuclei. Phys. Rep. 410, 335 (2005). https://doi.org/10.1016/j.physrep.2004.12.004https://doi.org/10.1016/j.physrep.2004.12.004.
L.L. Li, Z.H. Li, E.G. Zhao, et al., Isospin splitting of the nucleon-nucleus optical potential. Phys. Rev. C 80, 064607 (2009). https://doi.org/10.1103/PhysRevC.80.064607https://doi.org/10.1103/PhysRevC.80.064607
Q. B. Shen, Y. L. Han, and H. R Guo, Isospin dependent nucleon-nucleus optical potential with Skyrme interactions. Phys. Rev. C 80, 024604 (2009). https://doi.org/10.1103/PhysRevC.80.024604https://doi.org/10.1103/PhysRevC.80.024604
J.P. Jeuhenne, A. Lejeune, and C. Mahaux, Many-body theory of nuclear matter. Phys. Rep. 25, 85 (1976). https://doi.org/10.1016/0370-1573(76)90017-Xhttps://doi.org/10.1016/0370-1573(76)90017-X
L.G. Arnold, B.C. Clark, E.D. Cooper, et al., Energy dependence of the p - 40Ca optical potential: A Dirac equation perspective. Phys. Rev. C 25, 936 (1982). https://doi.org/10.1103/PhysRevC.25.936https://doi.org/10.1103/PhysRevC.25.936
S. Hama, B.C. Clark, E.D. Cooper et al., Global Dirac optical potentials for elastic proton scattering from heavy nuclei. Phys. Rev. C 41, 2737 (1990). https://doi.org/10.1103/PhysRevC.41.2737https://doi.org/10.1103/PhysRevC.41.2737
C. Hartnack and J. Aichelin, New parametrization of the optical potential. Phys. Rev. C 49, 2801 (1994). https://doi.org/10.1103/PhysRevC.49.2801https://doi.org/10.1103/PhysRevC.49.2801
G. Q. Zhang, Y. G. Ma, X. G. Cao et al., Unified description of nuclear stopping in central heavy-ion collisions from 10 MeV to 1.2 GeV. Phys. Rev. C 84, 034612 (2011). https://doi.org/10.1103/PhysRevC.84.034612https://doi.org/10.1103/PhysRevC.84.034612
J. Aichelin, A. Rosenhauer, G. Peilert et al., Importance of momentum-dependent interactions for the extraction of the nuclear equation of state from high-energy heavy-ion collisions. Phys. Rev. Lett. 58, 1926 (1987). https://doi.org/10.1103/PhysRevLett.58.1926https://doi.org/10.1103/PhysRevLett.58.1926
E.N.E. van Dalen, C. Fuchs, and A. Faessler, Effective nucleon masses in symmetric and asymmetric nuclear matter. Phys. Rev. Lett. 95, 022302 (2005). https://doi.org/10.1103/PhysRevLett.95.022302https://doi.org/10.1103/PhysRevLett.95.022302
M. Jaminon and C. Mahaux, Effective masses in relativistic approaches to the nucleon-nucleus mean field. Phys.Rev.C 40, 354 (1989). https://doi.org/10.1103/PhysRevC.40.354https://doi.org/10.1103/PhysRevC.40.354
H.Y. Kong, J. Xu, L.W. Chen et al., Constraining simultaneously nuclear symmetry energy and neutron-proton effective mass splitting with nucleus giant resonances using a dynamical approach. Phys. Rev. C 95, 034324 (2017). https://doi.org/10.1103/PhysRevC.95.034324https://doi.org/10.1103/PhysRevC.95.034324
B. A. Li, X. Han, What can we learn about the neutron-proton effective mass splitting from constraints on the density dependence of nuclear symmetry energy around normal density. Phys. Lett. B 727, 276 (2013). https://doi.org/10.1016/j.physletb.2013.10.006https://doi.org/10.1016/j.physletb.2013.10.006
C. B. Das, S.D. Gupta, C. Gale et al., Momentum dependence of symmetry potential in asymmetric nuclear matter for transport model calculations. Phys. Rev. C 67, 034611 (2003). https://doi.org/10.1103/PhysRevC.67.034611https://doi.org/10.1103/PhysRevC.67.034611
Ch.C. Moustakidis, Temperature and momentum dependence of single-particle properties in hot asymmetric nuclear matter. Phys. Rev. C 78, 054323 (2008). https://doi.org/10.1103/PhysRevC.78.054323https://doi.org/10.1103/PhysRevC.78.054323
J. W. Negele and K. Yazaki, Mean free path in a nucleus. Phys. Rev. Lett. 62, 71 (1981). https://doi.org/10.1103/PhysRevLett.47.71https://doi.org/10.1103/PhysRevLett.47.71
B. A. Li, Constraining the neutron-proton effective mass splitting in neutron-rich matter. Phys. Rev. C 69, 064602 (2004). https://doi.org/10.1103/PhysRevC.69.064602https://doi.org/10.1103/PhysRevC.69.064602
X.H. Li, W.J. Guo, B.A. Li, et al., Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon Cnucleus scattering data within an isospin dependent optical model. Phys. Lett. B 743, 408 (2015). https://doi.org/10.1016/j.physletb.2015.03.005https://doi.org/10.1016/j.physletb.2015.03.005
Z. Q. Feng, Effective mass splitting of neutron and proton and isospin emission in heavy-ion collisions. Nucl. Phys. A 878, 3 (2012). https://doi.org/10.1016/j.nuclphysa.2012.01.014https://doi.org/10.1016/j.nuclphysa.2012.01.014
C. Xu, B.A. Li, and L. W. Chen, Symmetry energy, its density slope, and neutron-proton effective mass splitting at normal density extracted from global nucleon optical potentials. Phys. Rev. C 82, 054607 (2010). https://doi.org/10.1103/PhysRevC.82.054607https://doi.org/10.1103/PhysRevC.82.054607
Z. Q. Feng, Momentum dependence of the symmetry potential and its influence on nuclear reactions. Phys. Rev. C 84, 024610 (2011). https://doi.org/10.1103/PhysRevC.84.024610https://doi.org/10.1103/PhysRevC.84.024610
E.N.E. van Dalen, C. Fuchs, and A. Faessler, Momentum, density, and isospin dependence of symmetric and asymmetric nuclear matter properties. Phys. Rev. C 72, 065803 (2005). https://doi.org/10.1103/PhysRevC.72.065803https://doi.org/10.1103/PhysRevC.72.065803
W. Zuo, L.G. Cao, B.A. Li et al., Isospin splitting of the nucleon mean field. Phys. Rev. C 60, 024605 (2005). https://doi.org/10.1103/PhysRevC.72.014005https://doi.org/10.1103/PhysRevC.72.014005
L. Ou, Z. Li, Y. Zhang et al., Effect of the splitting of the neutron and proton effective masses on the nuclear symmetry energy at finite temperatures. Phys. Lett. B 697, 246 (2011). https://doi.org/10.1016/j.physletb.2011.01.062https://doi.org/10.1016/j.physletb.2011.01.062
J. Rizzo, M. Colonna, M. Di Toro et al., Transport properties of isospin effective mass splitting. Nucl. Phys. A 732, 202 (2004). https://doi.org/10.1016/j.nuclphysa.2003.11.057https://doi.org/10.1016/j.nuclphysa.2003.11.057
Z. Q. Feng, Transverse emission of isospin ratios as a probe of high-density symmetry energy in isotopic nuclear reactions. Phys. Lett. B 707, 83 (2012). https://doi.org/10.1016/j.physletb.2011.12.001https://doi.org/10.1016/j.physletb.2011.12.001
W. J. Xie and F. S. Zhang, Nuclear collective flows as a probe to the neutron Cproton effective mass splitting. Phys. Lett. B 735, 250 (2014). https://doi.org/10.1016/j.physletb.2014.06.050https://doi.org/10.1016/j.physletb.2014.06.050
Y.X. Zhang, M.B. Tsang, Z. Li et al., Constraints on nucleon effective mass splitting with heavy ion collisions. Phys. Lett. B 732, 186 (2014). https://doi.org/10.1016/j.physletb.2014.03.030https://doi.org/10.1016/j.physletb.2014.03.030
L. W. Chen, C. M. Ko, and B. A Li, Determination of the stiffness of the nuclear symmetry energy from isospin diffusion. Phys. Rev. Lett. 94, 032701 (2005). https://doi.org/10.1103/PhysRevLett.94.032701https://doi.org/10.1103/PhysRevLett.94.032701
H.Y. Kong, Y. Xia, J. Xu et al., Reexamination of the neutron-to-proton-ratio puzzle in intermediate-energy heavy-ion collisions. Phys. Rev. C 91, 047601 (2015). https://doi.org/10.1103/PhysRevC.91.047601https://doi.org/10.1103/PhysRevC.91.047601
W. Reisdorf, A. Andronic, R. Averbeck et al., (FOPI Collaboration), Systematics of central heavy ion collisions in the 1A GeV regime. Nucl. Phys. A 848, 366 (2010). https://doi.org/10.1016/j.nuclphysa.2010.09.008https://doi.org/10.1016/j.nuclphysa.2010.09.008
A. Andronic, J. Łukasik1, W. Reisdorf et al., Systematics of stopping and flow in Au+ Au collisions. Eur. Phys. J. A 30, 31 (2006). https://doi.org/10.1140/epja/i2006-10101-2https://doi.org/10.1140/epja/i2006-10101-2
F. Rami, Y. Leifels, B. De Schauenburg et al., (FOPI Collaboration), Isospin tracing: A probe of nonequilibrium in central heavy-ion collisions. Phys. Rev. Lett. 84, 1120 (2000). https://doi.org/10.1103/PhysRevLett.84.1120https://doi.org/10.1103/PhysRevLett.84.1120
D. Persram and C. Gale, Elliptic flow in intermediate energy heavy ion collisions and in-medium effects. Phys. Rev. C 65, 064611 (2002). https://doi.org/10.1103/PhysRevC.65.064611https://doi.org/10.1103/PhysRevC.65.064611
V. R. Pandharipande and S. C. Pieper, Nuclear transparency to intermediate-energy nucleons from (e,e’p) reactions. Phys. Rev. C 45, 791 (1991). https://doi.org/10.1103/PhysRevC.45.791https://doi.org/10.1103/PhysRevC.45.791
B. A. Li and L. W. Chen, Nucleon-nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies. Phys. Rev. C 72, 064611 (2005). https://doi.org/10.1103/PhysRevC.72.064611https://doi.org/10.1103/PhysRevC.72.064611
Z. Q. Feng, Nuclear in-medium effects and collective flows in heavy-ion collisions at intermediate energies. Phys. Rev. C 85, 014604 (2012). https://doi.org/10.1103/PhysRevC.85.014604https://doi.org/10.1103/PhysRevC.85.014604
Z. Q. Feng, Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. Nucl. Sci. Tech. 29,40 (2018). https://doi.org/10.1007/s41365-018-0379-zhttps://doi.org/10.1007/s41365-018-0379-z
P.-C. Li, Y.-J. Wang, Q.-F. Li,et al., Collective flow and nuclear stopping in heavy ion collisions in Fermi energy domain. Nucl. Sci. Tech. 29,177 (2018). https://doi.org/10.1007/s41365-018-0510-1https://doi.org/10.1007/s41365-018-0510-1
J. Su, C.Y. Huang, W.J. Xie, et al., Effects of in-medium nucleon-nucleon cross sections on stopping observable and ratio of free protons in heavy-ion collisions at 400 MeV/nucleon. Eur. Phys. J. A 52, 207 (2016). https://doi.org/10.1140/epja/i2016-16207-xhttps://doi.org/10.1140/epja/i2016-16207-x
F. Zhang and J. Su, A dynamical description of the 136Xe+ p spallation at 1000 MeV/nucleon. Chinese Physics C 43, 024103 (2019). https://doi.org/10.1088/1674-1137/43/2/024103https://doi.org/10.1088/1674-1137/43/2/024103
J. Aichelin, Quantum molecular dynamics a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions. Phys. Rep. 202, 233 (1991). https://doi.org/10.1016/0370-1573(91)90094-3https://doi.org/10.1016/0370-1573(91)90094-3
G. D. Westfall, W. Bauer, D. Craig et al., Mass dependence of the disappearance of flow in nuclear collisions. Phys. Rev. Lett. 71, 1986 (1993). https://doi.org/10.1103/PhysRevLett.71.1986https://doi.org/10.1103/PhysRevLett.71.1986
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构