1.State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Company Ltd., Shenzhen 518172, China.
2.School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China.
3.Department of Automation, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
lijialiang_scut@126.com;
Corresponding author: youdd@scut.edu.cn;
Scan for full text
Jun Ling, Gao-Jun Liu, Jia-Liang Li, 等. Fault prediction method for nuclear power machinery based on bayesian PPCA recurrent neural network model[J]. 核技术(英文版), 2020,31(8):75
Jun Ling, Gao-Jun Liu, Jia-Liang Li, et al. Fault prediction method for nuclear power machinery based on bayesian PPCA recurrent neural network model[J]. Nuclear Science and Techniques, 2020,31(8):75
Jun Ling, Gao-Jun Liu, Jia-Liang Li, 等. Fault prediction method for nuclear power machinery based on bayesian PPCA recurrent neural network model[J]. 核技术(英文版), 2020,31(8):75 DOI: 10.1007/s41365-020-00792-9.
Jun Ling, Gao-Jun Liu, Jia-Liang Li, et al. Fault prediction method for nuclear power machinery based on bayesian PPCA recurrent neural network model[J]. Nuclear Science and Techniques, 2020,31(8):75 DOI: 10.1007/s41365-020-00792-9.
Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis (PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. An recurrent neural network (RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.
Key words: Fault predictionNuclear power machinerySteam turbineRecurrent neural networkProbabilistic principal component analysisBayesian confidence
J.P. Ma, J. Jiang, Applications of fault detection and diagnosis methods in nuclear power plants: A review. Prog. Nucl. Energ. 53, 255-266 (2011). https://doi.org/10.1016/j.pnucene.2010.12.001https://doi.org/10.1016/j.pnucene.2010.12.001
S. Mandal, B. Santhi, S. Sridhar, et al., Nuclear power plant thermocouple sensor-fault detection and classification using deep learning and generalized likelihood ratio test. IEEE T. Nucl. Sci. 64, 1526-1534 (2017). https://doi.org/10.1109/TNS.2017.2697919https://doi.org/10.1109/TNS.2017.2697919
Y.J. Gong, X.Y. Su, H. Qian, et al., Research on fault diagnosis methods for the reactor coolant system of nuclear power plant based on D-S evidence theory. Ann. Nucl. Energy. 112, 395-399 (2018). https://doi.org/10.1016/j.anucene.2017.10.026https://doi.org/10.1016/j.anucene.2017.10.026
D. Wu, J. Wang, S.J. Du, et al., Validation of the discharge force analysis method and key influence factors study. Nuclear Techniques, 43(4), 040007 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.040007https://doi.org/10.11889/j.0253-3219.2020.hjs.43.040007 (in Chinese)
W.F. Lyu, M.L. Chen, Q.Q. Huang, et al., Development on calculation code CPAP for radioactive activation product of pressurized water reactor nuclear power plant. Nuclear Techniques, 43(4), 040005 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.040005https://doi.org/10.11889/j.0253-3219.2020.hjs.43.040005 (in Chinese)
J.T. Mo, A multi-field coupling simulation method for rod dropping behavior based on overset mesh. Nuclear Techniques. 43(5), 050605 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.050605https://doi.org/10.11889/j.0253-3219.2020.hjs.43.050605 (in Chinese)
H.Y. Xie, J.X. Li, Z.Y. Yan, et al., Research of critical reactivity control online early warning technology in nuclear power plant. Proceedings of the 2nd International Symposium on Software Reliability, Industrial Safety, Cyber Security and Physical Protection of Nuclear Power Plant, Aug (2017), pp. 102-108. https://doi.org/10.1007/978-981-10-7416-5_13https://doi.org/10.1007/978-981-10-7416-5_13
H. Qian, Si-Yun Lin, Miao Zheng, et al. Research on intelligent early-warning system of main pipeline in nuclear power plants based on hierarchical and multidimensional fault identification method. Proceedings of the International Conference on Intelligent Computing for Sustainable Energy and Environment, Sep (2017), pp. 195-205. https://doi.org/10.1007/978-981-10-6364-0_20https://doi.org/10.1007/978-981-10-6364-0_20
J.H. Min, D.W. Kim, C.Y. Park, Demonstration of the validity of the early warning in online monitoring system for nuclear power plants. Nucl. Eng. Des. 349, 56-62 (2019). https://doi.org/10.1016/j.nucengdes.2019.04.028https://doi.org/10.1016/j.nucengdes.2019.04.028
B.S. Peng, H. Xia, Y.K. Liu, et al., Research on intelligent fault diagnosis method for nuclear power plant based on correlation analysis and deep belief network. Prog. Nucl. Energ. 108, 419-427 (2018). https://doi.org/10.1016/j.pnucene.2018.06.003https://doi.org/10.1016/j.pnucene.2018.06.003
Y.T. Yao, J. Wang, M. Xie, L.Q. Hu, et al., A new approach for fault diagnosis with full-scope simulator based on state information imaging in nuclear power plant. Ann. Nucl. Energy. 141, 107274 (2020). https://doi.org/10.1016/j.anucene.2019.107274https://doi.org/10.1016/j.anucene.2019.107274
A.S. Qin, H. Qin, Y.R. Lv, et al., Concurrent fault diagnosis based on bayesian discriminating analysis and time series analysis with dimensionless parameters. IEEE Sens. J. 19, 2254-2265 (2019). https://doi.org/10.1109/JSEN.2018.2885377https://doi.org/10.1109/JSEN.2018.2885377
M. Mehrjoo, M.J. Jozani, M. Pawlak, Wind turbine power curve modeling for reliable power prediction using monotonic regression. Renew. Energ. 147, 214-222 (2020). https://doi.org/10.1016/j.renene.2019.08.060https://doi.org/10.1016/j.renene.2019.08.060
S.A. Aye, P.S. Heyns, An integrated gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission. Mech. Syst. Signal Pr. 84, 485-498 (2017). https://doi.org/10.1016/j.ymssp.2016.07.039https://doi.org/10.1016/j.ymssp.2016.07.039
Y.C. Jiang, S. Yin, Recursive total principle component regression based fault detection and its application to vehicular cyber-physical systems. IEEE T. Ind. Inform. 14, 1415-1423 (2018). https://doi.org/10.1109/TII.2017.2752709https://doi.org/10.1109/TII.2017.2752709
T.Y. Gao, S. Yin, J.B. Qiu, et al., A partial least squares aided intelligent model predictive control approach. IEEE T. Syst. Man. Cy-S. 48, 2013-2021 (2018). https://doi.org/10.1109/TSMC.2017.2723017https://doi.org/10.1109/TSMC.2017.2723017
J. Herp, M.H. Ramezani, M. Bach-Andersen, et al., Bayesian state prediction of wind turbine bearing failure. Renew. Energ. 116, 164-172 (2018). https://doi.org/10.1016/j.renene.2017.02.069https://doi.org/10.1016/j.renene.2017.02.069
J.C. Li, Y.P. Cao, Y.L. Ying, et al., A rolling element bearing fault diagnosis approach based on multifractal theory and gray relation theory. Plos One 11, e0167587 (2016). https://doi.org/10.1371/journal.pone.0167587https://doi.org/10.1371/journal.pone.0167587
J. Liu, J.F. Liu, D.R. Yu, et al. Fault detection for gas turbine hot components based on a convolutional neural network. Energies 11, 2149 (2018). https://doi.org/10.3390/en11082149https://doi.org/10.3390/en11082149
Z.M. Liu, I.A. Karimi, Gas turbine performance prediction via machine learning. Energy 192, 116627 (2020). https://doi.org/10.1016/j.energy.2019.116627https://doi.org/10.1016/j.energy.2019.116627
M. He, D. He, Deep Learning based approach for bearing fault diagnosis. IEEE T. Ind. Appl. 53, 3057-3065 (2017). https://doi.org/10.1109/TIA.2017.2661250https://doi.org/10.1109/TIA.2017.2661250
H.S. Zhao, H.H. Liu, W.J. Hu, et al. Anomaly detection and fault analysis of wind turbine components based on deep learning network. Renew. Energ. 127, 825-834 (2018). https://doi.org/10.1109/TIA.2017.2661250https://doi.org/10.1109/TIA.2017.2661250
L. Wen, L. Gao, X.Y. Li, A new deep transfer learning based on sparse auto-encoder for fault diagnosis. IEEE T. Syst. Man. Cy-S. 49, 136-144 (2019). https://doi.org/10.1109/TSMC.2017.2754287https://doi.org/10.1109/TSMC.2017.2754287
H. Liu, J.Z. Zhou, Y. Zheng, et al., Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders. ISA T. 77, 167-178 (2018). https://doi.org/10.1016/j.isatra.2018.04.005https://doi.org/10.1016/j.isatra.2018.04.005
H. Shahnazari, Fault diagnosis of nonlinear systems using recurrent neural networks. Chem. Eng. Res. Des. 153, 233-245 (2020). https://doi.org/10.1016/j.cherd.2019.09.026https://doi.org/10.1016/j.cherd.2019.09.026
J.N. Wang, Y. Dou, Z.H. Wang, et al., Multi-Fault diagnosis method for wind power generation system based on recurrent neural network. P. I. Mech. Eng. A-J Pow. 233, 604-615 (2019). https://doi.org/10.1177/0957650919844065https://doi.org/10.1177/0957650919844065
A.S. Palau, M.H. Dhada, K. Bakliwal, et al., An Industrial Multi Agent System for real-time distributed collaborative prognostics. Eng. Appl. Artif. Intel. 85, 590-606 (2019). https://doi.org/10.1016/j.engappai.2019.07.013https://doi.org/10.1016/j.engappai.2019.07.013
J.J. Wang, P.L. Fu, L.B. Zhang, et al., Multilevel information fusion for induction motor fault diagnosis. IEEE-ASME T. Mech. 2019, 24, 2139-2150. https://doi.org/10.1109/TMECH.2019.2928967https://doi.org/10.1109/TMECH.2019.2928967
W. Li, M.J. Peng, Y.K. Liu, et al., Fault detection, identification and reconstruction of sensors in nuclear power plant with optimized PCA method. Ann. Nucl. Energy. 113, 105-117 (2018). https://doi.org/10.1016/j.anucene.2017.11.009https://doi.org/10.1016/j.anucene.2017.11.009
M.R. Prusty, T. Jayanthi, J. Chakraborty, et al., Feasibility of ANFIS towards multiclass event classification in PFBR considering dimensionality reduction using PCA. Ann. Nucl. Energy. 99, 311-320 (2017). https://doi.org/10.1016/j.anucene.2016.09.015https://doi.org/10.1016/j.anucene.2016.09.015
G.H. Wu, J.J. Tong, L.G. Zhang, et al., Framework for fault diagnosis with multi-source sensor nodes in nuclear power plants based on a bayesian network. Ann. Nucl. Energy. 122, 297-308 (2018). https://doi.org/10.1016/j.anucene.2018.08.050https://doi.org/10.1016/j.anucene.2018.08.050
R. Sharifi, R. Langari, Nonlinear sensor fault diagnosis using mixture of probabilistic PCA models. Mech. Syst. Signal Pr. 85, 638-650 (2017). https://doi.org/10.1016/j.ymssp.2016.08.028https://doi.org/10.1016/j.ymssp.2016.08.028
J.W. Xiang, Y.T. Zhong, H.F. Gao, Rolling element bearing fault detection using PPCA and spectral kurtosis. Measurement. 75, 180-191 (2015). https://doi.org/10.1016/j.measurement.2015.07.045https://doi.org/10.1016/j.measurement.2015.07.045
M.E. Tipping, C.M. Bishop, Mixtures of probabilistic principal component analyzers. Neural Comput. 11, 443-482 (1999). https://doi.org/10.1162/089976699300016728https://doi.org/10.1162/089976699300016728
J.T. Liu, C.H. Wu, J.W. Wang, Gated recurrent units based neural network for time heterogeneous feedback recommendation. Inform. Sciences 423, 50-65 (2018). https://doi.org/10.1016/j.ins.2017.09.048https://doi.org/10.1016/j.ins.2017.09.048
D. You, X. Shen, Y. Zhu, et al. A quantitative validation method of kriging metamodel for injection mechanism based on bayesian statistical inference. Metals 9, 493 (2019). https://doi.org/10.3390/met9050493https://doi.org/10.3390/met9050493
B. Cai, X. Kong, Y. Liu, et al., Application of bayesian networks in reliability evaluation, IEEE T. Ind. Inform. 15, 2146-2157 (2019). https://doi.org/10.1109/TII.2018.2858281https://doi.org/10.1109/TII.2018.2858281
W.J. Cui, B. Cao, Y.X Chen, Uncertainty analysis of Gaussian plume model based on Bayesian MCMC method. Nuclear Techniques, 43(4), 040009 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.040009https://doi.org/10.11889/j.0253-3219.2020.hjs.43.040009 (in Chinese)
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构