1.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2.School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author: zhangb@impcas.ac.cn
Scan for full text
Pei-Yan Yu, Bin Zhang, Feng-Feng Wang, 等. Fabrication and cold test of prototype of spatially periodic radio frequency quadrupole focusing linac[J]. Nuclear Science and Techniques, 2021,32(1):8
Pei-Yan Yu, Bin Zhang, Feng-Feng Wang, et al. Fabrication and cold test of prototype of spatially periodic radio frequency quadrupole focusing linac[J]. Nuclear Science and Techniques, 2021,32(1):8
Pei-Yan Yu, Bin Zhang, Feng-Feng Wang, 等. Fabrication and cold test of prototype of spatially periodic radio frequency quadrupole focusing linac[J]. Nuclear Science and Techniques, 2021,32(1):8 DOI: 10.1007/s41365-020-00835-1.
Pei-Yan Yu, Bin Zhang, Feng-Feng Wang, et al. Fabrication and cold test of prototype of spatially periodic radio frequency quadrupole focusing linac[J]. Nuclear Science and Techniques, 2021,32(1):8 DOI: 10.1007/s41365-020-00835-1.
A 325 MHz aluminum prototype of a spatially periodic rf quadrupole focusing linac was developed at the Institute of Modern Physics, Chinese Academy of Sciences, as a promising candidate for the front end of a high-current linac. It consists of an alternating series of crossbar H-type drift tubes and rf quadrupole sections. Owing to its special geometry, cavity fabrication is a major hurdle for its engineering development and application. In this paper, we report the detailed mechanical design of this structure and describe its fabrication process, including machining, assembly, and inspection. The field distribution was measured by the bead-pull technique. The results show that the field errors of both the accelerating and focusing fields are within an acceptable range. A tuning scheme for this new structure is proposed and verified. The cold test process and results are presented in detail. The development of this prototype provides valuable guidance for the application of the spatially periodic rf quadrupole structure.
Spatially periodic rf quadrupole focusing linacMechanical structure designBead-pull measurement
I.M. Kapchinsky, V.A. Teplyakov, A linear ion accelerator with spatially uniform hard focusing. Prib. Tekh. Eksp. 2, 19 (1970).
Y. He, High intensity RFQs: Review on recent developments, common problems, solutions, in: Proc. 8th Int. Particle Accelerator Conf, IPAC2017, Copenhagen, Denmark, 2017, available at https://accelconf.web.cern.ch/ipac2017/talks/wexa1_talk.pdf. (Accessed 6 September 2020).
V.A. Teplyakov, RFQ focusing in lincas, in: Proc. 16th Linear Accelerator Conf, LINAC1992, Ottawa, Canada, 1992, pp. 21-24.
Yu. Budanov, O.K. Belyaev, S.V. Ivanov et al., RFQ drift-tube proton linacs in IHEP, in: Proc. 22nd Linear Accelerator Conf, LINAC2004, Lubeck, Germany, 2004, pp. 285-287.
D.A. Swenson, RF-focused drift tube linac structure, in: Proc. 17th Linear Accelerator Conf, LINAC1994, Tsukuba, Japan, 1994, pp. 804-806.
D.A. Swenson, An RF focused interdigital ion accelerating structure, In: AIP Conference Proceedings 680, 1013 (2003).
P.N. Ostroumov, A.A. Kolomiets, S. Sharma et al., An innovative concept for acceleration of low-energy low-charge-state heavy-ion beams. Nucl. Instrum. Methods Phys. Res. A 547, 259-269 (2005). doi: 10.1016/j.nima.2005.03.138http://doi.org/10.1016/j.nima.2005.03.138
Z.J. Wang, Y. He, S.H. Liu et al., A new compact structure for a high intensity low-energy heavy-ion accelerator. Chin. Phys. C 37(12), 127001 (2013). doi: 10.1088/1674-1137/37/12/127001http://doi.org/10.1088/1674-1137/37/12/127001
A.A. Kolomiets, A.S. Plastun, Spatially periodic radio-frequency quadrupole focusing linac. Phys. Rev. ST Accel. Beams 18(12), 120101 (2015). doi: 10.1103/PhysRevSTAB.18.120101http://doi.org/10.1103/PhysRevSTAB.18.120101
G.Q. Xiao, H.S. Xu, S.C. Wang, HIAF and CiADS national research facilities: progress and prospect[J]. Nucl. Phys. Rev. 34, 275-283 (2017). doi: 10.11804/NuclPhysRev.34.03.275http://doi.org/10.11804/NuclPhysRev.34.03.275 (in Chinese)
J.C. Yang, J.W. Xia, G.Q. Xiao et al., High Intensity heavy ion Accelerator Facility (HIAF) in China. Nucl. Instrum. Methods Phys. Res. B 317, 263-265 (2013). doi: 10.1016/j.nimb.2013.08.046http://doi.org/10.1016/j.nimb.2013.08.046
X.F. Niu, F. Bai, X.J. Wang et al., Cryogenic system design for HIAF iLinac. Nucl. Sci. Tech. 30, 178 (2019). doi: 10.1007/s41365-019-0700-5http://doi.org/10.1007/s41365-019-0700-5
U. Ratzinger, H-type linac structures, CERN Accelerator School, CERN-2005-003, 2005, pp. 351-380, available at https://cds.cern.ch/record/865926/files/p351.pdf. (Accessed 6 September 2020).
Z.L. Zhang, Y. He, A.M. Shi et al., Development of the injector Ⅱ RFQ for China ADS project, in: Proc. 5th int. Particle Accelerator Conf, IPAC2014, Dresden, Germany, 2014, pp. 3280-3282.
J.D. Yuan, Y. He, B. Zhang et al., Alignment of beam position monitors in cryomodule of CADS injector Ⅱ. Nucl. Sci. Tech. 28, 75 (2017). doi: 10.1007/s41365-017-0232-9http://doi.org/10.1007/s41365-017-0232-9
L.C. Maier, J.C. Slater, Field strength measurements in resonant cavities. Journal of Applied Physics 23, 68-77 (1952). doi: 10.1063/1.1701980http://doi.org/10.1063/1.1701980
H. Klein, Basic concepts I, CERN Accelerator School, CERN-92-03, 1992, pp. 112-118, available at https://cds.cern.ch/record/400738/files/p97.pdf. (Accessed 6 September 2020).
H. Du, Y.J Yuan, Z.S. Li et al., Beam dynamics, RF measurement, and commissioning of a CW heavy ion IH-DTL. Nucl. Sci. Tech. 29, 42 (2018). doi: 10.1007/s41365-018-0373-5http://doi.org/10.1007/s41365-018-0373-5
Agilent Technologies, Understanding and Improving Network Analyzer Dynamic Range, Application Note 1363-1, available at http://anlage.umd.edu/Microwave%20Measurements%20for%20Personal%20Web%20Site/5980-2778EN.pdf. (Accessed 6 September 2020).
H.C. Liu, J. Peng, K.Y. Gong et al., The design and construction of CSNS drift tube linac. Nucl. Instrum. Methods Phys. Res. A 911, 131-137 (2018). doi: 10.1016/j.nima.2018.10.034http://doi.org/10.1016/j.nima.2018.10.034
C.X. Li, Y. He, F.F Wang et al., Radio frequency measurements and tuning of the China Material Irradiation Facility RFQ. Nucl. Instrum. Methods Phys. Res. A 890, 43-50 (2018). doi: 10.1016/j.nima.2018.02.047http://doi.org/10.1016/j.nima.2018.02.047
Q. Fu, K. Zhu, Y.R. Lu et al., Detailed study of RF properties of cold models for CW window-type RFQ. Nucl. Sci. Tech. 29, 157 (2018). doi: 10.1007/s41365-018-0489-7http://doi.org/10.1007/s41365-018-0489-7
T.P. Wangler, RF Linear Accelerators, John Wiley & Sons, New York, 2008.
B. Koubek, A. Grudiev, M. Timmins, rf measurements and tuning of the 750 MHz radio frequency quadrupole. Phys. Rev. Accel. Beams 20(8), 080102 (2017). doi: 10.1103/PhysRevAccelBeams.20.080102http://doi.org/10.1103/PhysRevAccelBeams.20.080102
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构