1.National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Corresponding author, bgsun@ustc.edu.cn
Scan for full text
Yun-Kun Zhao, Bao-Gen Sun, Ji-Gang Wang, 等. Effective improvement of beam lifetime based on radiofrequency phase modulation at the HLS-II storage ring[J]. Nuclear Science and Techniques, 2021,32(1):1
Yun-Kun Zhao, Bao-Gen Sun, Ji-Gang Wang, et al. Effective improvement of beam lifetime based on radiofrequency phase modulation at the HLS-II storage ring[J]. Nuclear Science and Techniques, 2021,32(1):1
Yun-Kun Zhao, Bao-Gen Sun, Ji-Gang Wang, 等. Effective improvement of beam lifetime based on radiofrequency phase modulation at the HLS-II storage ring[J]. Nuclear Science and Techniques, 2021,32(1):1 DOI: 10.1007/s41365-020-00836-0.
Yun-Kun Zhao, Bao-Gen Sun, Ji-Gang Wang, et al. Effective improvement of beam lifetime based on radiofrequency phase modulation at the HLS-II storage ring[J]. Nuclear Science and Techniques, 2021,32(1):1 DOI: 10.1007/s41365-020-00836-0.
A radiofrequency (RF) phase modulation method is applied to the Hefei Light Source II (HLS-II) storage ring to deeply investigate its longitudinal beam characteristics and improve the beam lifetime. A theoretical analytical model and corresponding experimental measurements of single bunch length and island phenomena are examined. From a series of online machine experiments, we demonstrate that the suitable phase modulation amplitude is 0.02 rad, corresponding to an optimum modulation frequency ranging from 19.6 to 20.7 kHz of the RF system. Furthermore, the overall beam lifetime can be increased by a factor of 2.38 as a result of the beam dilution effect.
Phase modulationAmplitudeBeam lifetimeLongitudinal beam characteristicsBeam dilutionIsland
H. Huang, M. Ball, B. Brabson, et al., Experimental determination of the Hamiltonian for synchrotron motion with rf phase modulation. Phys. Rev. E, 48, 4678-4688 (1993). doi: 10.1103/PhysRevE.48.4678http://doi.org/10.1103/PhysRevE.48.4678
N. P. Abreu, R. H. A. Farias, and P. F. Tavares, Longitudinal dynamics with rf phase modulation in the Brazilian electron storage ring. Phys. Rev. ST Accel. Beams, 9: 124401 (2006). doi: 10.1103/PhysRevSTAB.9.124401http://doi.org/10.1103/PhysRevSTAB.9.124401
F. Orsini, and A. Mosnier, Effectiveness of rf phase modulation for increasing bunch length in electron storage ring. Phy. Rev. E, 61, 4431-4440 (2000). doi: 10.1103/PhysRevE.61.4431http://doi.org/10.1103/PhysRevE.61.4431
J. M. Byrd, W.-H. Cheng, and F. Zimmermann, Nonlinear effects of phase modulation in an electron storage ring. Phys. Rev. E, 57, 4706-4712 (1998). doi: 10.1103/PhysRevE.57.4706http://doi.org/10.1103/PhysRevE.57.4706
G. Huang, H. Xu, and G. Liu, Experiment of RF modulation at HLS. High Energy Physics and Nuclear Physics, 30, 559-561, 2006.
Yu. Senichev, N. Hertel, S. Lunt, et al., Increasing the life time of SR sources by RF phase modulation. EPAC’98, 1339-1341, Stockholm (1998).
S. Sakanaka, M. Izawa, T. Mitsuhashi, et al., Improvement in the beam lifetime by means of an rf phase modulation at the KEK Photon Factory storage ring. Phys. Rev. ST Accel. Beams, 3: 050701 (2000). doi: 10.1103/PhysRevSTAB.3.050701http://doi.org/10.1103/PhysRevSTAB.3.050701
S. Sakanaka, Improvement in the beam stability by means of an RF-phase modulation. Photon Factory, Institute of Materials Structure Science, KEK, Japan (2001).
Alfonse N. Pham, S. Y. Lee, and K. Y. Ng, Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation. Phys. Rev. ST Accel. Beams, 18, 124001-124005 (2015). doi: 10.1103/PhysRevSTAB.18.124001http://doi.org/10.1103/PhysRevSTAB.18.124001
D. Quartullo, E. Shaposhnikova, and H. Timko, Controlled longitudinal emittance blow-up using band-limited phase noise in CERN PSB. J. Phys: Conf. Ser., 874: 012066 (2017). doi: 10.1088/1742-6596/874/1/012066http://doi.org/10.1088/1742-6596/874/1/012066
M. Sommer, B. Isbarn, B. Riemann, et al., Interaction of RF phase modulation and coupled-bunch instability at the DELTA storage ring. IPAC’16: TUPOR027, Busan, Korea (2016).
M. A. Jebramcik, F. H. Bahnsen, M. Bolsinger, et al., Coherent harmonic generation in the presence of synchronized RF phase modulation at DELTA. IPAC’16: WEPOW013, Busan, Korea (2016).
S. Y. Lee, and K. Y. Ng, Application of a localized chaos generated by RF-phase modulations in phase-space dilution. HB’10: THO1C04, Morschach, Switzerland (2010).
P. Yang, Z. Bai, T. Zhang, et al., Design of a hybrid ten-bend-achromat lattice for a diffraction-limited storage ring light source. Nucl. Instrum. Meth. A, 943: 162506 (2019). doi: 10.1016/j.nima.2019.162506http://doi.org/10.1016/j.nima.2019.162506
W. Fan, Z. Bai, W. Gao, et al., Physics issues in diffraction limited storage ring design. Sci. China Phys. Meth., 55, 802-807 (2012). doi: 10.1007/s11433-012-4696-7http://doi.org/10.1007/s11433-012-4696-7
S. C. Leemann, Interplay of Touschek scattering, intrabeam scattering, and rf cavities in ultralow-emittance storage rings. Phys. Rev. ST Accel. Beams, 17: 050705 (2014). doi: 10.1103/PhysRevSTAB.17.050705http://doi.org/10.1103/PhysRevSTAB.17.050705
T. Phimsen, B. Jiang, et al., Improving Touschek lifetime and synchrotron frequency spread by passive harmonic cavity in the storage ring of SSRF. Nucl. Sci. Tech., 28: 108 (2017). doi: 10.1007/s41365-017-0259-yhttp://doi.org/10.1007/s41365-017-0259-y
P. Gong, Y. Zhao, H. Hou, et al., Tuning control system of a third harmonic superconducting cavity in the Shanghai Synchrotron Radiation Facility. Nucl. Sci. Tech., 30: 157 (2019). doi: 10.1007/s41365-019-0669-0http://doi.org/10.1007/s41365-019-0669-0
J. Zheng, Y. Yang, B. Sun, et al., Central RF frequency measurement of the HLS-II storage ring. Chin. Phys. C, 40: 047005 (2016). doi: 10.1088/1674-1137/40/4/047005http://doi.org/10.1088/1674-1137/40/4/047005
S. Wang, W. Xu, X. Zhou, et al., Development of a tune knob for lattice adjustment in the HLS-II storage ring. Nucl. Sci. Tech., 29: 176 (2018). doi: 10.1007/s41365-018-0513-yhttp://doi.org/10.1007/s41365-018-0513-y
D. Jeon, M. Ball, J. Budnick, et al., A Mechanism of Anomalous Diffusion in Particle Beams. Phys. Rev. Lett., 80, 2314-2317 (1998). doi: 10.1103/PhysRevLett.80.2314http://doi.org/10.1103/PhysRevLett.80.2314
C. M. Chu, M. Ball, B. Brabson, et al., Effects of overlapping parametric resonances on the particle diffusion process. Phy. Rev. E, 60, 6051-6060 (1999). doi: 10.1103/PhysRevE.60.6051http://doi.org/10.1103/PhysRevE.60.6051
P. Kumar, A. D. Ghodke, A. K. Karnewar, et al., Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring. Rev. Sci. Instrum., 84, 123301 (2013). doi: 10.1063/1.4833395http://doi.org/10.1063/1.4833395
X. Huang, and J. Corbett, Measurement of beam lifetime and applications for SPEAR3. Nucl. Instrum. Meth. A, 629: 31-36 (2011). doi: 10.1016/j.nima.2010.10.147http://doi.org/10.1016/j.nima.2010.10.147
F. Chen, Z. Chen, Y. Zhou, et al., Touschek lifetime study based on the precisely bunch-by-bunch BCM system at SSRF. Nucl. Sci. Tech., 30: 144 (2019). doi: 10.1007/s41365-019-0655-6http://doi.org/10.1007/s41365-019-0655-6
B. G. Sun, P. Lu, D. H. He, et al., Development of new DCCT system for hefei light source. High Energy Physics and Nuclear Physics, 27, 169-172 (2003).
0
浏览量
5
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构