Ying-Hong Zuo, Jin-Hui Zhu, Peng Shang. Monte Carlo simulation of reflection effects of multi-element materials on gamma rays[J]. Nuclear Science and Techniques, 2021,32(1):10
Ying-Hong Zuo, Jin-Hui Zhu, Peng Shang. Monte Carlo simulation of reflection effects of multi-element materials on gamma rays[J]. Nuclear Science and Techniques, 2021,32(1):10
Ying-Hong Zuo, Jin-Hui Zhu, Peng Shang. Monte Carlo simulation of reflection effects of multi-element materials on gamma rays[J]. Nuclear Science and Techniques, 2021,32(1):10 DOI: 10.1007/s41365-020-00837-z.
Ying-Hong Zuo, Jin-Hui Zhu, Peng Shang. Monte Carlo simulation of reflection effects of multi-element materials on gamma rays[J]. Nuclear Science and Techniques, 2021,32(1):10 DOI: 10.1007/s41365-020-00837-z.
Monte Carlo simulation of reflection effects of multi-element materials on gamma rays
摘要
Abstract
To study the effects of the gamma reflection of multi-element materials, gamma ray transport models of single-element materials, such as iron and lead, and multi-element materials, such as polyethylene and ordinary concrete, were established in this study. Relationships among the albedo factors of the gamma photons and energies and average energy of the reflected gamma rays by material type, material thickness, incident gamma energy, and incidence angle of gamma rays were obtained by Monte Carlo simulation. The results show that the albedo factors of single-element and multi-element materials increase rapidly with an increase in the material thickness. When the thickness of the material increases to a certain value, the albedo factors do not increase further but rather tend to the saturation value. The saturation values for the albedo factors of the gamma photons and energies and the reflection thickness are related not only to the type of material but also to the incident gamma energy and incidence angle of the gamma rays. At a given incident gamma energy, which is between 0.2 and 2.5 MeV, the smaller the effective atomic number of the multi-element material is, the higher the saturation values of the albedo factors are. The larger the incidence angle of the gamma ray is, the greater the saturation value of the gamma albedo factor, saturation reflection thickness, and average saturation energy of the reflected gamma photons are.
关键词
Keywords
Multi-element materialsGamma albedo factorEffective atomic numberMonte Carlo simulation.
references
D. Yılmaz, Z. Uzunoğlu, C. Demir, Albedo factors of some elements in the atomic number range 26 ≤ Z ≤ 79 for 59.54 keV. Appl. Radiat. Isot. 122, 68-71 (2017). doi: 10.1016/j.apradiso.2017.01.013http://doi.org/10.1016/j.apradiso.2017.01.013
S. Azimkhani, F. Zolfagharpour, F. Ziaie, Calculation of thermal neutron albedo for mono-material and bi-material reflectors. Nucl. Sci. Tech. 29, 130 (2018). doi: 10.1007/s41365-018-0466-1http://doi.org/10.1007/s41365-018-0466-1
V.P. Singh, N.M. Badiger,S. Kothan et al., Gamma-ray and neutron shielding efficiency of lead-free gadolinium-based glasses. Nucl. Sci. Tech. 27, 103 (2016). doi: 10.1007/s41365-016-0099-1http://doi.org/10.1007/s41365-016-0099-1
Z. Uzunoğlu, D. Yilmaz, Y. Şahin, Determination of the saturation thickness and albedo factors for mercury(II) oxide and lead(II) oxide, Instrum. Sci. Technol. 45, 111-121 (2016). doi: 10.1080/10739149.2016.1199032http://doi.org/10.1080/10739149.2016.1199032
A.D. Sabharwal, B. Singh, B.S. Sandhu, Investigations of multiple backscattering and albedos of 1.12 MeV gamma photons in elements and alloys. Nucl. Instr. and Meth. B 267, 151-156 (2009). doi: 10.1016/j.nimb.2008.10.072http://doi.org/10.1016/j.nimb.2008.10.072
A.D. Sabharwal, S. Singh, B. Singh et al., Albedo factors of 279, 320, 511 and 662 keV backscattered gamma photons. Radiat. Eff. Defects Solids 166, 451-458 (2011). doi: 10.1080/10420150.2010.544039http://doi.org/10.1080/10420150.2010.544039
C.M. Diop, B. Elhamzaoui, J.C. Nimal, Determination of the double angular and energy differential gamma-ray albedo for iron material by using the Monte Carlo method. Nucl. Sci. Eng. 117, 201-226 (1994). doi: 10.13182/NSE94-A21499http://doi.org/10.13182/NSE94-A21499
H. Kadotani, A. Shimizu, Gamma ray albedo data generated by the invariant embedding method. J. Nucl. Sci. Technol. 35, 584-594 (1998). doi: 10.1080/18811248.1998.9733912http://doi.org/10.1080/18811248.1998.9733912
M. Biswas, A.K. Sinha, S.C. Roy, Measurement of number albedo of backscattered photons for tin and lead. J. Nucl. Sci. Technol. 17, 559-561 (1980). doi: 10.3327/jnst.17.559http://doi.org/10.3327/jnst.17.559
J. Šeda, J. Kluson, T. Cechák, The calculation of gamma-rays albedo by the MC method. J. Appl. Radiat. Isot. 29, 419-422(1978). doi: 10.1016/0020-708X(78)90077-7http://doi.org/10.1016/0020-708X(78)90077-7
B.P. Bulatov, The albedos of various substances for γ-rays from isotropic 60Co, 137Cs and 51Cr sources.J. Nucl. Energy, Part A 13, 82-84 (1960). DOI: 10.1016/S0368-3265(60)80030-8http://doi.org/10.1016/S0368-3265(60)80030-8.
M. Kurudirek, Estimation of effective atomic numbers of some solutions for photon energy absorption in the energy region 0.2-1.5 MeV: an alternative method. Nucl. Instrum. Methods Phys. Res., Sect. A 659, 302 (2011). doi: 10.1016/j.nima.2011.08.020http://doi.org/10.1016/j.nima.2011.08.020
M. Kurudirek, Effective atomic numbers, water and tissue equivalence properties of human tissues, tissue equivalents and dosimetric materials for total electron interaction in the energy region 10 keV - 1 GeV. Appl. Radiat. Isot. 94, 1 (2014). doi: 10.1016/j.apradiso.2014.07.002http://doi.org/10.1016/j.apradiso.2014.07.002
M. Kurudirek, Effective atomic numbers of different types of materials for proton interaction in the energy region 1 keV-10 GeV. Nucl. Instrum. Methods Phys. Res., Sect. B 336, 130 (2014). doi: 10.1016/j.nimb.2014.07.008http://doi.org/10.1016/j.nimb.2014.07.008
Y.C. Wu, Multi-functional neutronics calculation methodology and program for nuclear design and radiation safety evaluation. Fusion Sci. Technol. 74, 321-329 (2018). doi: 10.1080/15361055.2018.1475162http://doi.org/10.1080/15361055.2018.1475162
Y.C. Wu, J. Song, H.Q. Zheng et al., CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC. Ann. Nucl. Energy 82, 161-168 (2015). doi: 10.1016/j.anucene.2014.08.058http://doi.org/10.1016/j.anucene.2014.08.058
Y.C Wu, CAD-based interface programs for fusion neutron transport simulation. Fusion Eng. Des. 84, 1987-1992 (2009). doi: 10.1016/j.fusengdes.2008.12.041http://doi.org/10.1016/j.fusengdes.2008.12.041
J.H. Hubbell, S.M. Seltzer, Tables of X-Ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for Elements Z = 1 to 92. (1995). http://www.nist.gov/pml/data/xraycoef/index.cfm
S.S. Obaida, M.I. Sayyedb, D.K. Gaikwada et al., Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 148, 86-94 (2018). doi: 10.1016/j.radphyschem.2018.02.026http://doi.org/10.1016/j.radphyschem.2018.02.026
M.G. Dong, X.X. Xue, V.P. Singh et al., Shielding effectiveness of boron-containing ores in Liaoning province of China against gamma rays and thermal neutrons. Nucl. Sci. Tech. 29, 58 (2018). doi: 10.1007/s41365-018-0397-xhttp://doi.org/10.1007/s41365-018-0397-x
D.K. Gaikwad, P.P. Pawar, T.P. Selvam, Measurement of attenuation cross-sections of some fatty acids in the energy range 122-1330 keV.Pramana-J. Phys. 87, 12 (2016). doi: 10.1007/s12043-016-1213-yhttp://doi.org/10.1007/s12043-016-1213-y
A.K. Sinha, A. Bhattacharjee, Number albedo measurements from stratified layers of iron, concrete and aluminium. Pramana 33, 493-503 (1989). doi: 10.1007/BF02846016http://doi.org/10.1007/BF02846016
V.P. Singh, M.E. Medhat, S.P. Shirmardi, Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiat. Phys. Chem. 106, 255-260 (2015). doi: 10.1016/j.radphyschem.2014.07.002http://doi.org/10.1016/j.radphyschem.2014.07.002
A.D. Sabharwal, B. Sandhu, B. Singh, Multiple backscattering on monoelemental materials and albedo factors of 279, 320, 511 and 662 keV gamma photons. Phys. Scr. 83, 2 (2011). https://iopscience.iop.org/article/10.1088/0031-8949/83/02/025303