a.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
b.University of Chinese Academy of Sciences, Beijing 100049, China
fuhaiying@sinap.ac.cn
Corresponding author, douqiang@sinap.ac.cn
Scan for full text
Jun-Xia Geng, Yang Yang, Hai-Ying Fu, 等. Process optimization of a closed-chamber distillation system for the recovery of FLiNaK molten salt[J]. Nuclear Science and Techniques, 2021,32(1):3
Jun-Xia Geng, Yang Yang, Hai-Ying Fu, et al. Process optimization of a closed-chamber distillation system for the recovery of FLiNaK molten salt[J]. Nuclear Science and Techniques, 2021,32(1):3
Jun-Xia Geng, Yang Yang, Hai-Ying Fu, 等. Process optimization of a closed-chamber distillation system for the recovery of FLiNaK molten salt[J]. Nuclear Science and Techniques, 2021,32(1):3 DOI: 10.1007/s41365-020-00843-1.
Jun-Xia Geng, Yang Yang, Hai-Ying Fu, et al. Process optimization of a closed-chamber distillation system for the recovery of FLiNaK molten salt[J]. Nuclear Science and Techniques, 2021,32(1):3 DOI: 10.1007/s41365-020-00843-1.
Low-pressure distillation has been proposed as a suitable technique for the recovery of carrier salt from molten salt reactor spent fuel. A closed-chamber distillation system, in which the pump is stopped and pressure-induced salt distillation is performed, was arranged for fluoride salt treatment. A stair-step optimization process was demonstrated to improve the recovery efficiency by up to 99%. The pressure change curve was feasible for estimating the distillation process, and a method for displaying the pressure value online in order to determine the end-point was also developed. The decontamination factor of Nd in the condensate salt was deduced to be greater than 100 with 1 wt% NdF,3,-FLiNaK distillation. The optimal conditions developed in this study showed a high recovery ratio for the fluoride carrier salt and a high separation efficiency for rare earth products.
Keywords Low-pressure distillationClosed chamberFluoride molten saltRecovery ratio
P. Baron, S.M. Cornet, E.D. Collins et al., A review of separation processes proposed for advanced fuel cycles based on technology readiness level assessments, Prog. Nucl. Energ. 117,103091(2019). doi: 10.1016/j.pnucene.2019.103091http://doi.org/10.1016/j.pnucene.2019.103091
B. J. Riley, J. McFarlane, G.D. DelCul et al., Molten salt reactor waste and effluent management strategies: A review, Nucl. Eng. Des. 345, 94-109(2019). doi: 10.1016/j.nucengdes.2019.02.002http://doi.org/10.1016/j.nucengdes.2019.02.002
M. Gowtham, V. Mahesh, J.C. Gomez-Vidalet et.al., Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage, Energ. Convers. Manage. 167,156-164(2018). doi: 10.1016/j.enconman.2018.04.100http://doi.org/10.1016/j.enconman.2018.04.100
O. Beneš, R.J.M. Konings, Molten salt reactor fuel and coolant. In: Konings RJM, editor. Comprehensive nuclear materials, 3,359−389(2012).
M.J. Kelly, Recovery of carrier salt by distillation, Reactor Chemistry Division Annual Progress Report, USAEC Report ORNL-3789, Oak Ridge National Laboratory, Jan. 31, 1965 (1965).
J.R. Hightower, L.E. McNeese, Measurement of the relative volatilities of fluorides of Ce, La, Pr, Nd, Sm, Eu, Ba, Sr, Y and Zr in mixtures of LiF and BeF2, ORNL-TM-2058, January 1968 (1968)
S. Cantor, Molten-salt reactor program semiannual progress report, USAEC Report ORNL-4037, Oak Ridge National Laboratory, August 31,1966 (1966)
J.R. Hightower, L.E. McNeese, Low-pressure distillation of molten fluoride mixtures: nonradioactive tests for the MSRE distillation experiment, USAEC Report ORNL-4434, Oak Ridge National Laboratory, January 1971(1971)
C.D. Scott, W.L. Carter, Preliminary design study of a continous fluorination- vacuum distillation system for regeneration fuel and fertile streams in molten salt breeder reactor, USAEC Report ORNL-3791, Oak Ridge National Laboratory, January 1966(1966)
B.R. Westphal, J. C. Price, D. Vaden et al., Engineering-scale distillation of cadmium for actinide recovery, J. Alloy. Comp. 444-445, 561-564(2007). doi: 10.1016/j.jallcom.2007.02.072http://doi.org/10.1016/j.jallcom.2007.02.072
B.R. Westphal, K. Marsden, J. C. Price, Development of a ceramic-lined crucible for the separation of salt from uranium, Metall. Mater. Trans. 40A, 2861-2866(2009). doi: 10.1007/s11661-009-9957-3http://doi.org/10.1007/s11661-009-9957-3
H.L. Lee, G.I. Park, J.W. Lee et al., Current status of pyroprocessing development at KAERI, Sci.Technol. Nucl. Install. 343492(2013). doi: 10.1155/2013/343492http://doi.org/10.1155/2013/343492
H.C. Eun, Y.Z. Cho, S.M. Son et al., Recycling of LiCl-KCl eutectic based salt wastes containing radioactive rare earth oxychlorides or oxides, J. Nucl. Mater. 420, 548-553(2012). doi: 10.1016/j.jnucmat.2011.11.048http://doi.org/10.1016/j.jnucmat.2011.11.048
H.C. Eun, H.C. Yang, Y.J. Cho et al., Separation of pure LiCl-KCl eutectic salt from a mixture of LiCl-KCl eutectic salt and rare-earth precipitates by vacuum distillation, J. Nucl. Sci. Technol. 44, 1295-1300(2007). doi: 10.1080/18811248.2007.9711374http://doi.org/10.1080/18811248.2007.9711374
M. Iizuka, M. Akagi, T. Koyama, High-temperature distillation and consolidation of U-Zr cathode product from molten salt electrorefining of simulated metallic fuel, J. Nucl. Mater. 448, 259-269 (2014). doi: 10.1016/j.jnucmat.2014.02.015http://doi.org/10.1016/j.jnucmat.2014.02.015
R. Harris, W.G. Davenport, Vacuum distillation of liquid metals: Part I. Theory and experimental study, Metall. Trans. B 13, 581-588(1982). doi: 10.1007/BF02650016http://doi.org/10.1007/BF02650016
A.S. Basin, A.B. Kaplun, A.B. Meshalkin et al., The LiCl-KCl binary system, Russ. J. Inorg. Chem.53,1509-1511(2008). doi: 10.1134/S003602360809026Xhttp://doi.org/10.1134/S003602360809026X
L.X. Sun, Y.S. Niu, C.W. Hu et al., Influence of molten salt composition on the fluorination of UF4. J. Fluor. Chem. 218:99-104(2019). doi: 10.1016/j.jfluchem.2018.11.015http://doi.org/10.1016/j.jfluchem.2018.11.015
J.H. Zhou, J.L. Tan, B. Sun et al., The protective performance of a molten salt frozen wall in the process of fluoride volatility of uranium. Nucl. Sci. Tech. 30: 102 (2019). doi: 10.1007/s41365-019-0620-4http://doi.org/10.1007/s41365-019-0620-4
H.Y. Fu, J.X. Geng, Y. Yang et al., Low pressure distillation technology of molten salt in spent fuel pyroprocessing field. Nucl. Tech. 41: 010603(2018). doi: 10.11889/j.0253-3219.2018.hjs.41.040001http://doi.org/10.11889/j.0253-3219.2018.hjs.41.040001. (In Chinese)
Y. Luo, J.X. Geng, H.Y. Fu et al., The evaporation behaviour of ThF4 mixed of FLiNaK melt during low-pressure distillation. J. Nucl. Mater. 525:48-52(2019). doi: 10.1016/j.jnucmat.2019.07.026http://doi.org/10.1016/j.jnucmat.2019.07.026
Z.H. Wang, H.Y. Fu, Y. Yang et al., The evaporation behaviors of rare-earth-doped FLiNaK melts during low-pressure distillation, J. Radioanal. Nucl. Chem. 311, 637-642(2017). doi: 10.1007/s10967-016-5110-0http://doi.org/10.1007/s10967-016-5110-0
W. Huang, L.F. Tian, C.F. She et al., Electrochemical behavior of europium (III)-europium (II) in LiF-NaF-KF molten salt, Electrochim. Acta 147, 114-120(2014). doi: 10.1016/j.electacta.2014.08.119http://doi.org/10.1016/j.electacta.2014.08.119
H.C. Eun, Y.Z. Cho, T.K. Lee et al., An improvement study on the closed chamber distillation system for recovery of renewable salts from salt wastes containing radioactive rare earth compounds, J. Radioanal. Nucl. Chem. 295,345-350(2013). doi: 10.1007/s10967-012-1856-1http://doi.org/10.1007/s10967-012-1856-1
W.L. Carter, R. B. Lindauer, L. E. McNeese, Design of an engineering-scale, vacuum distillation experiment for molten-salt reactor fuel, ORNL-TM-2213,1968,Nov.
Q. Dou, H.Y. Fu, Y. Yang et al., Distillation behaviors of LiF salt under different pressures and evaporation temperatures. J. Nucl. Radiochem. 36(6): 357−362(2014). doi: 10.7538/hhx.2014.36.06.0357http://doi.org/10.7538/hhx.2014.36.06.0357. (In Chinese)
D. Noriler, A.A.C. Barros, M.R. Wolf Maciel et al., Simultaneous momentum, mass, and energy transfer analysis of a distillation sieve tray using CFD techniques: prediction of efficiencies, Ind. Eng. Chem. Res. 49, 6599-6611(2010). doi: 10.1016/j.cej.2013.03.046http://doi.org/10.1016/j.cej.2013.03.046.
B. Sun, J.H. Zhou, Q. Dou et al.,Numerical analysis and experimental research on heat transfer equilibrium state of molten salt frozen wall. Nucl. Tech. 41: 060601(2018). doi: 10.11889/j.0253-3219.2018.hjs.41.060601http://doi.org/10.11889/j.0253-3219.2018.hjs.41.060601. (In Chinese)
S. Dushman, J.M. Lafferty, Scientific foundations of vacuum technique 2nd ed. John Wiley and Sons, New York, NY 1-39(1962).
Y.S. Choi, H.J. Park, L. Taihyeop, Evaporation properties of FLiNaK with plasma interaction. Joint Conference of the 9th international conference on open magnetic systems for plasma confinement, 2012 Aug;
Y.S. Choi, H.J. Park, L. Taihyeop, Evaporation properties of FLiNaK with plasma interaction. Tsukuba (Japan), Trans. Fusion Sci. Technol. 63,221-224(2013). https://doi.org/10.13182/FST13-A16910
0
浏览量
5
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构