a.School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
b.Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China.
Corresponding author, xugang@shu.edu.cn
Corresponding author, wyshi1981@shu.edu.cn
Scan for full text
Shu-Ting Ji, Qin-Qing Wang, Juan Zhou, 等. Synthesis of a Ag/AgCl/PLA membrane under electron beam irradiation for the photocatalytic degradation of methylene blue and chloramphenicol[J]. 核技术(英文版), 2020,31(2):22
Shu-Ting Ji, Qin-Qing Wang, Juan Zhou, et al. Synthesis of a Ag/AgCl/PLA membrane under electron beam irradiation for the photocatalytic degradation of methylene blue and chloramphenicol[J]. Nuclear Science and Techniques, 2020,31(2):22
Shu-Ting Ji, Qin-Qing Wang, Juan Zhou, 等. Synthesis of a Ag/AgCl/PLA membrane under electron beam irradiation for the photocatalytic degradation of methylene blue and chloramphenicol[J]. 核技术(英文版), 2020,31(2):22 DOI: 10.1007/s41365-020-0726-8.
Shu-Ting Ji, Qin-Qing Wang, Juan Zhou, et al. Synthesis of a Ag/AgCl/PLA membrane under electron beam irradiation for the photocatalytic degradation of methylene blue and chloramphenicol[J]. Nuclear Science and Techniques, 2020,31(2):22 DOI: 10.1007/s41365-020-0726-8.
Polylactic acid (PLA) has been extensively applied in the fields of biology and renewable biodegradable materials because of its superior biodegradability. PLA has excellent potential as a renewable biodegradable adsorbent in wastewater treatment. However, its poor photocatalytic properties have hindered its practical application. In this study, polyvinylpyrrolidone (PVPP) or glutaraldehyde (GA) was utilized as an adhesive agent to prepare Ag/AgCl/PLA photocatalysts with highly efficient visible light photocatalysis on a PLA fabric by utilizing the electron beam irradiation method. The photocatalytic activities of the Ag/AgCl/PLA samples were examined under visible light irradiation to analyze the degradation of methylene blue (MB) and chloramphenicol (CPL). Our experimental results demonstrate that the nanomaterial Ag/AgCl was uniformly distributed on the PLA fiber surface; this can be attributed to the effects of the crosslinking PVPP or GA. Under electron beam irradiation, adding crosslinking PVPP (or GA) is beneficial to the loading of Ag/AgCl onto the PLA. For the composite Ag/AgCl/PLA, the degradation rate for MB was as high as 97% after 150 min of visible light irradiation. The addition of 4 mg/ml of Ag/AgCl solution resulted in the greatest photocatalytic activity for CPL, and we advanced the possible degradation pathways of CPL with the best sample. Additionally, the as-prepared composite Ag/AgCl/PLA exhibited favorable antibacterial activity against,E. coli, and ,S. aureus, with a bacterial removal rate of ,>,77%.
Key words: AgAgClPLAAdhesive agentElectron beam irradiationPhotocatalysisAntibacterial activity
Z. Song, Y.Q. He, Novel AgCl/Ag/AgFeO2 Z-scheme heterostructure photocatalyst with enhanced photocatalytic and stability under visible light. Appl. Surf. Sci. 420, 911-918(2017). https://doi.org/10.1016/j.apsusc.2017.05.212https://doi.org/10.1016/j.apsusc.2017.05.212
M. Mousavi, A.H.Y. , S.R. Pouran, Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci. - Mater. Electron. 29(3), 1719-1747(2017). https://doi.org/10.1007/s10854-017-8166-xhttps://doi.org/10.1007/s10854-017-8166-x
R.J. Tayade, T.S. Natarajan, H.C. Bajaj, Photocatalytic Degradation of Methylene Blue Dye Using Ultraviolet Light Emitting Diodes. Ind. Eng. Chem. Res. 48, 10262-10267(2009). https://doi.org/10.1021/ie9012437https://doi.org/10.1021/ie9012437
C.Q. Tan, Y.J. Dong, D.F. Fu et al., Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: Kinetics and mechanism of radical generation. Chem. Eng. J. 334, 1006-1015(2018). https://doi.org/10.1016/j.cej.2017.10.020https://doi.org/10.1016/j.cej.2017.10.020
S.Q. Xia, Z.L. Gu, Z.Q. Zhang et al., Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles. Chem. Eng. J. 257, 98-104(2014). https://doi.org/10.1016/j.cej.2014.06.106https://doi.org/10.1016/j.cej.2014.06.106
Y.Y. Fan, W.G. Ma, D.G. Han et al., Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 27(25), 3767-3773(2015). https://doi.org/10.1002/adma.201500391https://doi.org/10.1002/adma.201500391
M.N. Chong, B. Jin, C.W. Chow et al., Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997-3027(2010). https://doi.org/10.1016/j.watres.2010.02.039https://doi.org/10.1016/j.watres.2010.02.039
D.J. Martin, G.G. Liu, S.J. Moniz et al., Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective. Chem. Soc. Rev. 44(21), 7808-7828(2015). https://doi.org/10.1039/c5cs00380fhttps://doi.org/10.1039/c5cs00380f
M. Hara, T. Kondo, M. Komoda et al., Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun.(3), 357-358(1998). https://doi.org/10.1039/a707440ihttps://doi.org/10.1039/a707440i
D.L. Shao, J. Gao, G.Q. Xin et al., Cl-Doped ZnO Nanowire Arrays on 3D Graphene Foam with Highly Efficient Field Emission and Photocatalytic Properties. Small 11(36), 4785-4792(2015). https://doi.org/10.1002/smll.201501411https://doi.org/10.1002/smll.201501411
S.K. Le, T.S. Jiang, Y.W. Li et al., Highly efficient visible-light-driven mesoporous graphitic carbon nitride/ZnO nanocomposite photocatalysts. Appl. Catal., B 200, 601-610(2017). https://doi.org/10.1016/j.apcatb.2016.07.027https://doi.org/10.1016/j.apcatb.2016.07.027
V. Vaiano, G. Iervolino, L. Rizzo, Cu-doped ZnO as efficient photocatalyst for the oxidation of arsenite to arsenate under visible light. Appl. Catal., B 238, 471-479(2018). https://doi.org/10.1016/j.apcatb.2018.07.026https://doi.org/10.1016/j.apcatb.2018.07.026
J. Schneider, M. Matsuoka, M. Takeuchi et al., Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919-9986(2014). https://doi.org/10.1021/cr5001892https://doi.org/10.1021/cr5001892
K.P.O. Mahesh, D.H. Kuo, B.R. Huang et al., Chemically modified polyurethane-SiO2/TiO2 hybrid composite film and its reusability for photocatalytic degradation of Acid Black 1 (AB 1) under UV light. Appl. Catal., A 475, 235-241(2014). https://doi.org/10.1016/j.apcata.2014.01.044https://doi.org/10.1016/j.apcata.2014.01.044
W.A. Thompson, C. Perier, M.M. Maroto-Valer, Systematic study of sol-gel parameters on TiO2 coating for CO2 photoreduction. Appl. Catal., B 238, 136-146(2018). https://doi.org/10.1016/j.apcatb.2018.07.018https://doi.org/10.1016/j.apcatb.2018.07.018
A. Ziarati, A. Badiei, R. Luque, Black hollow TiO2 nanocubes: Advanced nanoarchitectures for efficient visible light photocatalytic applications. Appl. Catal., B 238, 177-183(2018). https://doi.org/10.1016/j.apcatb.2018.07.020https://doi.org/10.1016/j.apcatb.2018.07.020
M. Abid, S. Bouattour, A.M. Ferraria et al., Functionalization of cotton fabrics with plasmonic photo-active nanostructured Au-TiO2 layer. Carbohydr. Polym. 176, 336-344(2017). https://doi.org/10.1016/j.carbpol.2017.08.090https://doi.org/10.1016/j.carbpol.2017.08.090
G. Yang, H. Ding, D. Chen et al., Construction of urchin-like ZnIn2S4-Au-TiO2 heterostructure with enhanced activity for photocatalytic hydrogen evolution. Appl. Catal., B 234, 260-267(2018). https://doi.org/10.1016/j.apcatb.2018.04.038https://doi.org/10.1016/j.apcatb.2018.04.038
C.H. Kuo, Y.C. Yang, S. Gwo et al., Facet-dependent and au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures. J. Am. Chem. Soc. 133(4), 1052-1057(2011). https://doi.org/10.1021/ja109182yhttps://doi.org/10.1021/ja109182y
W.L. Li, J.J. Wang, H.X. Chi et al., Preparation and antibacterial activity of polyvinyl alcohol/regenerated silk fibroin composite fibers containing Ag nanoparticles. J. Appl. Polym. Sci. 123(1), 20-25(2012). https://doi.org/10.1002/app.34434https://doi.org/10.1002/app.34434
P. Wang, B.B. Huang, X.Y. Qin et al., Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed. Engl. 47(41), 7931-7933(2008). https://doi.org/10.1002/anie.200802483https://doi.org/10.1002/anie.200802483
Q.Q. Liu, Y.G. Xu, J. Wang et al., Fabrication of Ag/AgCl/ZnFe2O4 composites with enhanced photocatalytic activity for pollutant degradation and E. coli disinfection. Colloids Surf., A 553, 114-124(2018). https://doi.org/10.1016/j.colsurfa.2018.05.019https://doi.org/10.1016/j.colsurfa.2018.05.019
S.A. Mao, R. Bao, D. Fang et al., Facile synthesis of Ag/AgX (X = Cl, Br) with enhanced visible-light-induced photocatalytic activity by ultrasonic spray pyrolysis method. Adv. Powder Technol. 29(11), 2670-2677(2018). https://doi.org/10.1016/j.apt.2018.07.016https://doi.org/10.1016/j.apt.2018.07.016
S.W. Zhang, J.X. Li, X.K. Wang et al., In situ ion exchange synthesis of strongly coupled Ag@AgCl/g-C(3)N(4) porous nanosheets as plasmonic photocatalyst for highly efficient visible-light photocatalysis. ACS Appl. Mat. Interfaces 6(24), 22116-22125(2014). https://doi.org/10.1021/am505528chttps://doi.org/10.1021/am505528c
W.D. Zhang, X.A. Dong, Y. Liang et al., Ag/AgCl nanoparticles assembled on BiOCl/Bi12O17Cl2 nanosheets: Enhanced plasmonic visible light photocatalysis and in situ DRIFTS investigation. Appl. Surf. Sci. 455, 236-243(2018). https://doi.org/10.1016/j.apsusc.2018.05.171https://doi.org/10.1016/j.apsusc.2018.05.171
X. Lv, T.H. Wang, W. Jiang, Preparation of Ag@AgCl/g-C3N4/TiO2 porous ceramic films with enhanced photocatalysis performance and self-cleaning effect. Ceram. Int. 44(8), 9326-9337(2018). https://doi.org/10.1016/j.ceramint.2018.02.145https://doi.org/10.1016/j.ceramint.2018.02.145
X.L. Xiao, L. Ge, C.C. Han et al., A facile way to synthesize Ag@AgBr cubic cages with efficient visible-light-induced photocatalytic activity. Appl. Catal., B 163, 564-572(2015). https://doi.org/10.1016/j.apcatb.2014.08.037https://doi.org/10.1016/j.apcatb.2014.08.037
G.D. Fan, X. Zheng, J. Luo et al., Rapid synthesis of Ag/AgCl@ZIF-8 as a highly efficient photocatalyst for degradation of acetaminophen under visible light. Che. Eng. J. 351, 782-790(2018). https://doi.org/10.1016/j.cej.2018.06.119https://doi.org/10.1016/j.cej.2018.06.119
C.C. Han, L. Ge, C.F. Chen et al., Site-selected synthesis of novel Ag@AgCl nanoframes with efficient visible light induced photocatalytic activity. J. Mater. Chem. A 2(31), 12594-12600(2014). https://doi.org/10.1039/c4ta01941ehttps://doi.org/10.1039/c4ta01941e
S. Zhao, Y.W. Zhang, Y.M. Zhou et al., Reactable polyelectrolyte-assisted preparation of flower-like Ag/AgCl/BiOCl composite with enhanced photocatalytic activity. J. Photochem. Photobiol., A 350, 94-102(2018). https://doi.org/10.1016/j.jphotochem.2017.09.070https://doi.org/10.1016/j.jphotochem.2017.09.070
Q. Xu, Z.J. Song, S.T. Ji et al., The photocatalytic degradation of chloramphenicol with electrospun Bi2O2CO3-poly(ethylene oxide) nanofibers: the synthesis of crosslinked polymer, degradation kinetics, mechanism and cytotoxicity. RSC Adv. 9(51), 29917-29926(2019). https://doi.org/10.1039/c9ra06346chttps://doi.org/10.1039/c9ra06346c
L.H. Dong, D.D. Liang, R.C. Gong, In Situ Photoactivated AgCl/Ag Nanocomposites with Enhanced Visible Light Photocatalytic and Antibacterial Activity. Eur. J. Inorg. Chem. 2012(19), 3200-3208(2012). https://doi.org/10.1002/ejic.201200172https://doi.org/10.1002/ejic.201200172
J. Yan, H. Xu, Y.G. Xu et al., Synthesis, characterization and photocatalytic activity of Ag/AgCl/graphite-like C3N4 under visible light irradiation. J. Nanosci. Nanotechnol. 14(9), 6809-6815(2014). https://doi.org/10.1166/jnn.2014.8975https://doi.org/10.1166/jnn.2014.8975
Y.B. Du, C.G. Niu, L. Zhang et al., Synthesis of Ag/AgCl hollow spheres based on the Cu2O nanospheres as template and their excellent photocatalytic property. Mol. Catal. 436, 100-110(2017). https://doi.org/10.1016/j.mcat.2017.03.022https://doi.org/10.1016/j.mcat.2017.03.022
B.V.R. Chowdari, P.P. KUMARI, Structure and ionic conduction in the Ag2O·WO3·TeO2 glasssystem. J. Mater. Sci. 33, 3591-3599(1998). https://doi.org/10.1023/A:1004651228203https://doi.org/10.1023/A:1004651228203
Y.H. Liang, S.L. Lin, L. Liu et al., Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: Enhanced photocatalytic degradation under visible light irradiation. Appl. Catal., B 164, 192-203(2015). https://doi.org/10.1016/j.apcatb.2014.08.048https://doi.org/10.1016/j.apcatb.2014.08.048
S. Hu, P. Li, Z. Wei et al., Antimicrobial activity of nisin-coated polylactic acid film facilitated by cold plasma treatment. J. Appl. Polym. Sci. 135(47), 46844(2018). https://doi.org/10.1002/app.46844https://doi.org/10.1002/app.46844
W.J. Ong, L.K. Putri, L.L. Tan et al., Heterostructured AgX/g-C3N4 (X = Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach: Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide. Appl. Catal., B 180, 530-543(2016). https://doi.org/10.1016/j.apcatb.2015.06.053https://doi.org/10.1016/j.apcatb.2015.06.053
Q. Yang, M. Hu, J. Guo et al., Synthesis and enhanced photocatalytic performance of Ag/AgCl/TiO2 nanocomposites prepared by ion exchange method. Journal of Materiomics 4(4), 402-411(2018). https://doi.org/10.1016/j.jmat.2018.06.002https://doi.org/10.1016/j.jmat.2018.06.002
L. Wang, P.X. Jin, S.H. Duan et al., In-situ incorporation of Copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Sci. Bull. 64(13), 926-933(2019). https://doi.org/10.1016/j.scib.2019.05.012https://doi.org/10.1016/j.scib.2019.05.012
G. Liu, G.H. Wang, Z.H. Hu et al., Ag2O nanoparticles decorated TiO2 nanofibers as a p-n heterojunction for enhanced photocatalytic decomposition of RhB under visible light irradiation. Appl. Surf. Sci. 465, 902-910(2019). https://doi.org/10.1016/j.apsusc.2018.09.216https://doi.org/10.1016/j.apsusc.2018.09.216
L. Liu, L. Ding, Y.G. Liu et al., Enhanced visible light photocatalytic activity by Cu2O-coupled flower-like Bi2WO6 structures. Appl. Surf. Sci. 364, 505-515(2016). https://doi.org/10.1016/j.apsusc.2015.12.170https://doi.org/10.1016/j.apsusc.2015.12.170
L. Liu, S.L. Lin, J.S. Hu et al., Plasmon-enhanced photocatalytic properties of nano Ag@AgBr on single-crystalline octahedral Cu2O (1 1 1) microcrystals composite photocatalyst. Appl. Surf. Sci. 330, 94-103(2015). https://doi.org/10.1016/j.apsusc.2015.01.021https://doi.org/10.1016/j.apsusc.2015.01.021
P. Tun, K. Wang, H. Naing et al., Facile preparation of visible-light-responsive kaolin-supported Ag@AgBr composites and their enhanced photocatalytic properties. Appl. Clay Sci. 175, 76-85(2019). https://doi.org/10.1016/j.clay.2019.04.003https://doi.org/10.1016/j.clay.2019.04.003
Y.S. Zhang, Y.S. Shao, N.Y. Gao et al., Kinetics and by-products formation of chloramphenicol (CAP) using chlorination and photocatalytic oxidation. Chem. Eng. J. 333, 85-91(2018). https://doi.org/10.1016/j.cej.2017.09.094https://doi.org/10.1016/j.cej.2017.09.094
I. Amildon Ricardo, C.E.S. Paniagua, V.A.B. Paiva et al., Degradation and initial mechanism pathway of chloramphenicol by photo-Fenton process at circumneutral pH. Che. Eng. J. 339, 531-538(2018). https://doi.org/10.1016/j.cej.2018.01.144https://doi.org/10.1016/j.cej.2018.01.144
B. Gao, W.P. Chen, S.N. Dong et al., Polypyrrole/ZnIn2S4 composite photocatalyst for enhanced mineralization of chloramphenicol under visible light. J. Photochem. Photobiol., A 349, 115-123(2017). https://doi.org/10.1016/j.jphotochem.2017.09.018https://doi.org/10.1016/j.jphotochem.2017.09.018
Y.G. Xu, T. Zhou, S.Q. Huang et al., Preparation of magnetic Ag/AgCl/CoFe2O4 composites with high photocatalytic and antibacterial ability. RSC Adv. 5(52), 41475-41483(2015). https://doi.org/10.1039/c5ra04410chttps://doi.org/10.1039/c5ra04410c
X.M. Zhang, Y. Shu, S.P. Su et al., One-step coagulation to construct durable anti-fouling and antibacterial cellulose film exploiting Ag@AgCl nanoparticle- triggered photo-catalytic degradation. Carbohydr. Polym. 181, 499-505(2018). https://doi.org/10.1016/j.carbpol.2017.10.041https://doi.org/10.1016/j.carbpol.2017.10.041
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构