1.College of Physics, Sichuan University, Chengdu 610065, China
2.RIKEN Nishina Center, Wako 351-0198, Japan
3.Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560, Japan
4.China institute of atomic energy, Beijing 102413, China
Corresponding author, bclphy@scu.edu.cn
Scan for full text
Di Wu, Chun-Lin Bai, H. Sagawa, 等. Contributions of optimized tensor interactions on the binding energies of nuclei[J]. 核技术(英文版), 2020,31(2):14
Di Wu, Chun-Lin Bai, H. Sagawa, et al. Contributions of optimized tensor interactions on the binding energies of nuclei[J]. Nuclear Science and Techniques, 2020,31(2):14
Di Wu, Chun-Lin Bai, H. Sagawa, 等. Contributions of optimized tensor interactions on the binding energies of nuclei[J]. 核技术(英文版), 2020,31(2):14 DOI: 10.1007/s41365-020-0727-7.
Di Wu, Chun-Lin Bai, H. Sagawa, et al. Contributions of optimized tensor interactions on the binding energies of nuclei[J]. Nuclear Science and Techniques, 2020,31(2):14 DOI: 10.1007/s41365-020-0727-7.
The tensor parts of Skyrme interactions are constrained from the collective charge-exchange Spin-Dipole (SD) and Gamow-Teller (GT) excitation energies in ,90,Zr and ,208,Pb, together with the isotopic dependence of energy splitting between proton ,h,11/2, and ,g,7/2, single-particle orbits along the ,Z,=50 isotopes. With the optimized tensor interactions, the binding energies of spherical or weakly deformed nuclei with ,A,=54 228 are studied systematically. The present results show that the global effect of tensor interaction is attractive, and systematically increases the binding energies of all these nuclei and makes the nuclei more bound. The root mean squared deviation (RMSD) of the calculated binding energies from the experimental values is significantly improved by the optimized tensor interactions and the contribution of the tensor interaction to the binding energy is estimated.
Tensor forceBinding energyGamow-Teller transitionSpin-Dipole transitionSingle-particle energy differences.
D. Vautherin and D. M. Brink, Hartree-Fock Calculations with Skyrme’s Interaction. I. Spherical Nuclei, Phys. Rev. C 5, 626 (1972). https://doi.org/10.1103/PhysRevC.5.626https://doi.org/10.1103/PhysRevC.5.626
J. Decharge and D. Gogny, Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei, Phys. Rev. C 21, 1568 (1980). https://doi.org/10.1103/PhysRevC.21.1568https://doi.org/10.1103/PhysRevC.21.1568
M. Bender and P.-H. Heenen, Self-consistent mean-field models for nuclear structure, Rev. Mod. Phys. 75, 121 (2003). https://doi.org/10.1103/RevModPhys.75.121https://doi.org/10.1103/RevModPhys.75.121
J. Meng, ed., Relativistic Density Functional for Nuclear Structure (World Scientific,Singapore, 2016). https://dx.doi.org/10.1142/9872https://dx.doi.org/10.1142/9872
G. E. Brown, T. T. S. Kuo, J. W. Holt, et al., The Nucleon Nucleon Interaction and the Nuclear Many-Body Problem (World Scientific, Singapore, 2010).
I. R. Afnan, D. M. Clement and F. J. D. Serduke, The tensor force in nuclear saturation, Nucl. Phys. A 170, 625 (1971). https://doi.org/10.1016/0375-9474(71)90242-9https://doi.org/10.1016/0375-9474(71)90242-9
T. Lesinski, M. Bender, K. Bennaceur, et al., Tensor part of the Skyrme energy density functional: Spherical nuclei, Phys. Rev. C 76, 014312 (2007). https://dx.doi.org/10.1103/PhysRevC.76.014312https://dx.doi.org/10.1103/PhysRevC.76.014312
J. P. Schiffer, S. J. Freeman, J. A. Caggiano,et al., Is the nuclear spin-orbit interaction changing with neutron excess? Phys. Rev. Lett. 92, 162501 (2004). https://doi.org/10.1103/PhysRevLett.92.162501https://doi.org/10.1103/PhysRevLett.92.162501
T. Otsuka, T. Suzuki, R. Fujimoto, et al., Evolution of nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005). https://doi.org/10.1103/PhysRevLett.95.232502https://doi.org/10.1103/PhysRevLett.95.232502
T. Otsuka, T. Matsuo, D. Abe, Mean field with tensor force and shell structure of exotic nuclei, Phys. Rev. Lett. 97, 162501 (2006). https://doi.org/10.1103/PhysRevLett.97.162501https://doi.org/10.1103/PhysRevLett.97.162501
M. Bender, K. Bennaceur, T. Duguet, et al., Tensor part of the Skyrme energy density functional. II. Deformation properties of magic and semi-magic nuclei, Phys. Rev. C 80, 064302 (2009). https://doi.org/10.1103/PhysRevC.80.064302https://doi.org/10.1103/PhysRevC.80.064302
B. A. Brown, T. Duguet, T. Otsuka, et al., Tensor interaction contributions to single-particle energies, Phys. Rev. C 74, 061303(R) (2006). https://doi.org/10.1103/PhysRevC.74.061303https://doi.org/10.1103/PhysRevC.74.061303
G. Colò, H. Sagawa, S. Fracasso, et al., Spin-orbit splitting and the tensor component of the Skyrme interaction, Phys. Lett. B 646, 227 (2007). https://doi.org/10.1016/j.physletb.2007.01.033https://doi.org/10.1016/j.physletb.2007.01.033
D. M. Brink and Fl. Stancu, Evolution of nuclear shells with the Skyrme density dependent interaction, Phys. Rev. C 75, 064311 (2007). https://doi.org/10.1103/PhysRevC.75.064311https://doi.org/10.1103/PhysRevC.75.064311
D. M. Brink and Fl. Stancu, Skyrme density functional description of the double magic 78Ni nucleus Phys. Rev. C 97, 064304 (2018). https://doi.org/10.1103/PhysRevC.97.064304https://doi.org/10.1103/PhysRevC.97.064304
W. Long, H. Sagawa, J. Meng, et al., Evolution of nuclear shell structure due to the pion exchange potential. Europhys. Lett. 82, 12001 (2008). https://doi.org/10.1209/0295-5075/82/12001https://doi.org/10.1209/0295-5075/82/12001
L. J. Jiang, S. Yang, B. Y. Sun, et al., Nuclear tensor interaction in a covariant energy density functional, Phys. Rev. C 91, 034326 (2015). https://doi.org/10.1103/PhysRevC.91.034326https://doi.org/10.1103/PhysRevC.91.034326
Y.-Y. Zong and B.-Y. Sun, Relativistic interpretation of the nature of the nuclear tensor force, Chin. Phys. C 42, 024101 (2018). https://doi.org/10.1088/1674-1137/42/2/024101https://doi.org/10.1088/1674-1137/42/2/024101
Z. Wang, Q. Zhao, H. Liang, et al., Quantitative analysis of tensor effects in the relativistic Hartree-Fock theory, Phys. Rev. C 98, 034313 (2018). https://doi.org/10.1103/PhysRevC.98.034313https://doi.org/10.1103/PhysRevC.98.034313
H. Sagawa and G. Colò, Tensor interaction in mean-field and density functional theory approaches to nuclear structure, Prog. Part. Nucl. Phys. 76, 76 (2014). https://doi.org/10.1016/j.ppnp.2014.01.006https://doi.org/10.1016/j.ppnp.2014.01.006
C. L. Bai, H. Sagawa, H. Q. Zhang, et al., Effect of tensor correlations on Gamow-Teller states in Zr-90 and Pb-208, Phys. Lett. B, 675, 28 (2009). https://doi.org/10.1016/j.physletb.2009.03.077https://doi.org/10.1016/j.physletb.2009.03.077
C. L. Bai, H. Q. Zhang, X. Z. Zhang, et al., Quenching of Gamow-Teller strength due to tensor correlations in 90Zr and 208Pb Phys. Rev. C, 79, 041301(R) (2009). https://doi.org/10.1103/PhysRevC.79.041301https://doi.org/10.1103/PhysRevC.79.041301
C. L. Bai, H. Q. Zhang, H. Sagawa, et al., Effect of the tensor force on the charge exchange spin-dipole excitations of 208Pb Phys. Rev. Lett. 105, 072501 (2010). https://doi.org/10.1103/PhysRevLett.105.072501https://doi.org/10.1103/PhysRevLett.105.072501
C.L. Bai, H.Q. Zhang, H. Sagawa, et al., Spin-isospin excitations as quantitative constraints for the tensor force, Phys. Rev. C 83, 054316(2011). https://doi.org/10.1103/PhysRevC.83.054316https://doi.org/10.1103/PhysRevC.83.054316
S.H. Shen, G. Colò, X. Roca-Maza, Skyrme functional with tensor terms from ab initio calculations of neutron-proton drops Phys. Rev. C 99, 034322(2019). https://doi.org/10.1103/PhysRevC.99.034322https://doi.org/10.1103/PhysRevC.99.034322
T.H.R. Skyrme, The effective nuclear potential, Nucl. Phys. 9, 615 (1959). https://doi.org/10.1016/0029-5582(58)90345-6https://doi.org/10.1016/0029-5582(58)90345-6
T.H.R. Skyrme, CVII. The nuclear surface, Phil. Mag. 1, 1043 (1956). https://doi.org/10.1080/14786435608238186https://doi.org/10.1080/14786435608238186
E. Perlińska, S. G. Rohoziński, J. Dobaczewski, and W. Nazarewicz, Local density approximation for proton-neutron pairing correlations: Formalism, Phys. Rev. C 69, 014316 (2004). https://doi.org/10.1103/PhysRevC.69.014316https://doi.org/10.1103/PhysRevC.69.014316
Fl. Stancu, D.M. Brink, H. Flocard, The tensor part of Skyrme’s interaction, Phys. Lett. B 68, 108 (1977). https://doi.org/10.1016/0370-2693(77)90178-2https://doi.org/10.1016/0370-2693(77)90178-2
N.V. Giai, and H. Sagawa, Spin-isospin and pairing properties of modified Skyrme interactions, Phys. Lett. B 106, 379 (1981). https://doi.org/10.1016/0370-2693(81)90646-8https://doi.org/10.1016/0370-2693(81)90646-8
J. Engel, M. Bender, J. Dobaczewski, et al., β decay rates of r-process waiting-point nuclei in a self-consistent approach, Phys. Rev. C 60, 014302 (1999). https://doi.org/10.1103/PhysRevC.60.014302https://doi.org/10.1103/PhysRevC.60.014302
M. Bender, J. Dobaczewski, J. Engel et al., Gamow-Teller strength and the spin-isospin coupling constants of the Skyrme energy functional, Phys. Rev. C 65, 054322 (2002). https://doi.org/10.1103/PhysRevC.65.054322https://doi.org/10.1103/PhysRevC.65.054322
J. Dobaczewski, H. Flocard, J. Treiner, Hartree-Fock-Bogolyubov descriptions of nuclei near the neutrino dripline, Nucl Phys A 422, 103 (1984). https://doi.org/10.1016/0375-9474(84)90433-0https://doi.org/10.1016/0375-9474(84)90433-0
K. Bennaceur, J. Dobaczewski, Coordinate-space solution of the Skyrme-Hartree-Fock-Bogolyubov equations within spherical symmetry. The Program HFBRAD (v1.00), Comput. Phys. Comm 168, 96 (2005). https://doi.org/10.1016/j.cpc.2005.02.002https://doi.org/10.1016/j.cpc.2005.02.002
B. H. Sun, Yu. A. Litvinov, I. Tanihata et al., Toward precision mass measurements of neutron-rich nuclei relevant to r-process nucleosynthesis, Front. Phys. 10, 102102 (2015). https://doi.org/10.1007/s11467-015-0503-zhttps://doi.org/10.1007/s11467-015-0503-z
S. K. Patra, C. L. Wu, C. R. Praharaj, et al., A systematic study of superheavy nuclei for Z = 114 and beyond using the relativistic mean field approach, Nucl. Phys. A, 651, 117 (1999). https://doi.org/10.1016/S0375-9474(99)00129-3https://doi.org/10.1016/S0375-9474(99)00129-3
T. K. Dong and Z. Z. Ren, Improved version of a binding energy formula for heavy and superheavy nuclei with Z≥90 and N≥140, Phys. Rev. C, 77, 064310 (2008). https://doi.org/10.1103/PhysRevC.77.064310https://doi.org/10.1103/PhysRevC.77.064310
Y. H. Zhang, Y. A. Litvinov, T. Uesaka et al., Storage ring mass spectrometry for nuclear structure and astrophysics research, Phys. Scr. 91, 073002 (2016). https://doi.org/10.1088/0031-8949/91/7/073002https://doi.org/10.1088/0031-8949/91/7/073002
H.S. Xu, Y. H. Zhang, and Y. A. Litvinov, Accurate mass measurements of exotic nuclei with the CSRe in Lanzhou. Int. J. Mass Spectrom. 349-350, 162-171 (2013). https://doi.org/10.1016/j.ijms.2013.04.029https://doi.org/10.1016/j.ijms.2013.04.029
M. Z. Sun, X.H. Zhou, M. Wang et al., Precision mass measurements of short-lived nuclides at HIRFL-CSR in Lanzhou, Front. Phys. 13(6), 132112 (2018). https://doi.org/10.1007/s11467-018-0844-5https://doi.org/10.1007/s11467-018-0844-5
M. Mougeot, D. Atanasov, K. Blaum, et al., Precision mass measurements of 58-63Cr: Nuclear collectivity towards the N=40 island of inversion, Phys. Rev. Lett. 120, 232501 (2018). https://doi.org/10.1103/PhysRevLett.120.232501https://doi.org/10.1103/PhysRevLett.120.232501
J. H. Liu, Z. Ge, Q. Wang et al, Electrostatic-lenses position-sensitive TOF MCP detector for beam diagnostics and new scheme for mass measurements at HIAF, Nucl. Sci. Tech. 30, 152 (2019). https://doi.org/10.1007/s41365-019-0676-1https://doi.org/10.1007/s41365-019-0676-1
C.F. Weizsäcker, Zur Theorie der Kernmassen, Z. Phys. 96, 431 (1935). https://doi.org/10.1007/BF01337700https://doi.org/10.1007/BF01337700
Bethe R. F., Nuclear Physics A. Stationary states of nuclei, Rev. Mod. Phys. 8, 82 (1936). https://doi.org/10.1103/RevModPhys.8.82https://doi.org/10.1103/RevModPhys.8.82
P. Möller, J. R. Nix, W.D. Myers et al., Nuclear ground state masses and deformations, At. Data and Nucl. Data Tables 59, 185 (1995). https://doi.org/10.1006/adnd.1995.1002https://doi.org/10.1006/adnd.1995.1002
N. Wang and M. Lin, Nuclear mass predictions with a radial basis function approach, Phys. Rev. C 84, 051303(R) (2011). https://doi.org/10.1103/PhysRevC.84.051303https://doi.org/10.1103/PhysRevC.84.051303
M. Liu, N. Wang, Y. G. Deng et al., Further improvements on a global nuclear mass model, Phys. Rev. C 84, 014333 (2011). https://doi.org/10.1103/PhysRevC.84.014333https://doi.org/10.1103/PhysRevC.84.014333
N. Wang, M. Liu, X. Z. Wu, Modification of nuclear mass formula by considering isospin effects, Phys. Rev. C 81, 044322 (2010). https://doi.org/10.1103/PhysRevC.81.044322https://doi.org/10.1103/PhysRevC.81.044322
N. Wang, M. Liu, X. Z. Wu et al., Surface diffuseness correction in global mass formula, Phys. Lett. B 734, 215 (2014). https://dx.doi.org/10.1016/j.physletb.2014.05.049https://dx.doi.org/10.1016/j.physletb.2014.05.049
W. J. Huang, G. Audi, M. Wang, et al., The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures, Chin. Phys. C 41, 030002 (2017). https://dx.doi.org/10.1088/1674-1137/41/3/030002https://dx.doi.org/10.1088/1674-1137/41/3/030002
M. Wang, G. Audi, F. G. Kondev, et al., The AME2016 atomic mass evaluation (II). Tables, graphs and references, Chin. Phys. C 41, 030003 (2017). https://dx.doi.org/10.1088/1674-1137/41/3/030003https://dx.doi.org/10.1088/1674-1137/41/3/030003
S. Goriely, N. Chamel, J. M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient, Phys. Rev. C 88, 024308(2013). https://doi.org/10.1103/PhysRevC.88.024308https://doi.org/10.1103/PhysRevC.88.024308
S. Goriely, N. Chamel, J. M. Pearson, Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XVI. Inclusion of self-energy effects in pairing, Phys. Rev. C 93, 034337(2016). https://doi.org/10.1103/PhysRevC.93.034337https://doi.org/10.1103/PhysRevC.93.034337
M. Kortelainen, J. McDonnell, W. Nazarewicz, et al., Nuclear energy density optimization: Shell structure, Phys. Rev. C 89, 054314(2014). https://doi.org/10.1103/PhysRevC.89.054314https://doi.org/10.1103/PhysRevC.89.054314
G. Audi, A.H. Wapstra, and C. Thibault, The Ame2003 atomic mass evaluation (II). Tables, graphs and references, Nucl. Phys. A 729, 337 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003https://doi.org/10.1016/j.nuclphysa.2003.11.003
Centre for Photomuclear Experiments Data. Programming by S.Yu. Komarov, 2007. Chart of nucleus shape and size parameters. http://cdfe.sinp.msu.ru/services/radchart/radmain.htmlhttp://cdfe.sinp.msu.ru/services/radchart/radmain.html
W. Rarita, and J. Schwinger, On the neutron-proton interaction. Phys. Rev. 59, 436(1941). https://doi.org/10.1103/PhysRev.59.436https://doi.org/10.1103/PhysRev.59.436
H. Feshbach, and W. Rarita, Tensor forces and the triton binding energy. Phys. Rev. 75, 1384(1949). https://doi.org/10.1103/PhysRev.75.1384https://doi.org/10.1103/PhysRev.75.1384
J. W. Negele and D. Vautherin, Density-matrix expansion for an effective nuclear hamiltonian. Phys. Rev. C 5, 1472 (1972). https://doi.org/10.1103/PhysRevC.5.1472https://doi.org/10.1103/PhysRevC.5.1472
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构