1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
Corresponding author, wangnaxiu@sinap.ac.cn
Scan for full text
Xin-Yue Jiang, Hui-Ju Lu, Yu-Shuang Chen, 等. Numerical and experimental investigation of a new conceptual fluoride salt freeze valve for Thorium based Molten Salt Reactor[J]. 核技术(英文版), 2020,31(2):16
Xin-Yue Jiang, Hui-Ju Lu, Yu-Shuang Chen, et al. Numerical and experimental investigation of a new conceptual fluoride salt freeze valve for Thorium based Molten Salt Reactor[J]. Nuclear Science and Techniques, 2020,31(2):16
Xin-Yue Jiang, Hui-Ju Lu, Yu-Shuang Chen, 等. Numerical and experimental investigation of a new conceptual fluoride salt freeze valve for Thorium based Molten Salt Reactor[J]. 核技术(英文版), 2020,31(2):16 DOI: 10.1007/s41365-020-0729-5.
Xin-Yue Jiang, Hui-Ju Lu, Yu-Shuang Chen, et al. Numerical and experimental investigation of a new conceptual fluoride salt freeze valve for Thorium based Molten Salt Reactor[J]. Nuclear Science and Techniques, 2020,31(2):16 DOI: 10.1007/s41365-020-0729-5.
To improve the reliability and reduce energy consumption, a conceptual design of a freeze valve is proposed for the Thorium-based Molten Salt Reactor (TMSR) concept. Fins were utilized in this new design to enhance heat transfer and realize passive shut-off function, which could not be realized by the previous design. An experimental apparatus using the fluoride salt FLiNaK was constructed to conduct a series of preliminary solidification and melting experiments. In addition, the enthalpy–porosity method of ANSYS,®, Fluent solver was applied to simulate the solidification process of the salt at a specified operating temperature. Temperature distributions of the fluoride salt, solidification/melting time, and frozen plug effect were analyzed under natural convection heat transfer in an open space. The calculated salt temperatures exhibited good agreement with the experimental values. The results indicated that the range of effective operating temperature is 530–600 °C for the finned freeze valve. In this study, the ideal set operating temperature of the finned freeze valve was chosen as 560 °C to achieve competent performance. Moreover, 560 °C is additionally the highest set operating temperature for maintaining excellent cooling performance and sustaining deep-frozen condition of the salt plug. At this set operating temperature, the simulation data indicated that the molten salt in the flat part of the finned freeze valve will completely solidify at 10.5 min. The percentage of solid salt in the flat and lower transitional parts of the valve reaches 29.60% in 30.0 min. Furthermore, the surface temperature of the proposed freeze valve is 11.10% lower compared with that of the TMSR freeze valve at a cooling gas supply of 173 m,3,/h. Therefore, the new freeze valve was proven to be capable of reducing the energy consumption and realizing the passive shut-off function.
FinNatural convectionFreeze valveFluoride saltSolidificationMolten salt reactor
D. LeBlanc, Molten salt reactors: a new beginning for an old idea, Nucl. Eng. Des. 240(6), 1644-1656 (2010). https://dx.doi.org/10.1016/j.nucengdes.2009.12.033https://dx.doi.org/10.1016/j.nucengdes.2009.12.033
H.Y. Fu, J.X. Geng, Y. Yang et al., Low pressure distillation technology of molten salt in spent fuel pyroprocessing field, Nuclear Techniques, 41(04), 040001 (2018). https://dx.doi.org/10.11889/j.0253-3219.2018.hjs.41.040001https://dx.doi.org/10.11889/j.0253-3219.2018.hjs.41.040001 (in Chinese)
H. G. MacPherson, The molten salt reactor adventure, Nucl. Eng. Des. 90(4), 374-380 (1985). https://dx.doi.org/10.13182/NSE90-374https://dx.doi.org/10.13182/NSE90-374
M. W. Rosenthal, An account of Oak Ridge National Laboratory’s thirteen nuclear reactors, Oak Ridge National Laboratory, ORNL/TM-2009/181, 2009. http://dx.doi.org/10.2172/970897http://dx.doi.org/10.2172/970897
J. A. Lane, E. G. Bohlmann, P. R. Kasten et al., Part I: Aqueous homogeneous reactors, Oak Ridge National Laboratory, 1958. http://moltensalt.org/references/static/downloads/pdf/FFR_chap01.pdfhttp://moltensalt.org/references/static/downloads/pdf/FFR_chap01.pdf
E. S. Bettis, R. W. Schroeder, G. A. Cristy, et al., The Aircraft Reactor Experiment—design and construction, Nucl. Sci. Eng. 2(6), 804-825 (2017). https://dx.doi.org/10.13182/NSE57-A35495https://dx.doi.org/10.13182/NSE57-A35495
J. R. Engel, W. R. Grimes, W. A. Rhoades, et al., Molten-salt reactors for efficient nuclear fuel utilization without plutonium separation, Oak Ridge National Laboratory, ORNL/TM-6413, 1978. https://doi.org/10.13182/NT79-A32377https://doi.org/10.13182/NT79-A32377
P.N. Haubenreich, J. R. Engel, Experience with the Molten-Salt Reactor Experiment, Nucl. Appl. Technol. 8(2), 118-136 (1970). https://doi.org/10.13182/NT8-2-118https://doi.org/10.13182/NT8-2-118
E. S. Bettis, L. G. Alexander, H. L. Watts, Design studies of a molten-salt reactor demonstration plant, Oak Ridge National Laboratory, ORNL-TM-3832, 1972. https://doi.org/10.2172/4668569https://doi.org/10.2172/4668569
E. H. Ottewitte, Cursory first look at the Molten Chloride Fast Reactor as an alternative to the conventional BATR concept, Idaho National Engineering Laboratory, 1992.
J. Serp, M. Allibert, O. Beneš et al., The molten salt reactor (MSR) in generation IV: overview and perspectives, Prog. Nucl. Energy, 77, 308-319 (2014). https://dx.doi.org/10.1016/j.pnucene.2014.02.014https://dx.doi.org/10.1016/j.pnucene.2014.02.014
J. Krepel, SAMOFAR - a paradigm shift in reactor safety with the molten salt fast reactor, India: Bhabha Atomic Research Centre, 2015.
Y.P. Peng, C.G. Yu, D.Y. Cui et al., Analysis of burnup performance for a molten chloride salt fast reactor based on thorium fuel, Nucl. Tech. 41(07), 070602 (2018). https://dx.doi.org/10.11889/j.0253-3219.2018.hjs.41.070602https://dx.doi.org/10.11889/j.0253-3219.2018.hjs.41.070602 (In Chinese)
T. J. Dolan, Molten salt reactors and thorium energy, Woodhead Publishing United Kingdom, 2017. https://doi.org/10.1016/b978-0-08-101126-3.00001-4https://doi.org/10.1016/b978-0-08-101126-3.00001-4
S.H. Yu, X.X. Li, Y.F. Liu et al., Study on core physical parameters for molten salt experimental reactor, Nucl. Tech., 42(03), 030604 (2019). https://dx.doi.org/10.11889/j.0253-3219.2019.hjs.42.030604https://dx.doi.org/10.11889/j.0253-3219.2019.hjs.42.030604 (in Chinese)
S.H. Yu, R. Yan, R.M. Ji et al., Layout design and physical effect analysis of control rod in PB-FHR, Nucl. Tech. 41(01), 010605 (2018). https://dx.doi.org/10.11889/j.0253-3219.2018.hjs.41.010605https://dx.doi.org/10.11889/j.0253-3219.2018.hjs.41.010605 (in Chinese)
Y.H. Fang, X.Z. Cai, J.G. Chen et al., Optimization of TRISO fuel particle for thorium-based pebble bed fluoride salt-cooled high-temperature reactor, Nucl. Tech. 42(08), 080604 (2019). https://dx.doi.org/10.11889/j.0253-3219.2019.hjs.42.080604https://dx.doi.org/10.11889/j.0253-3219.2019.hjs.42.080604 (In Chinese)
R. C. Robertson, MSRE design and operation report part I description of reactor design, Oak Ridge National Laboratory, ORNL-TM-728, 1965. http://dx.doi.org/10.2172/4654707http://dx.doi.org/10.2172/4654707
Q.H. Zhang, Mechanism study of freeze-valve for molten salt reactor (MSR), in: Proceedings of the European Nuclear Conference - ENC, France, 2014.
J. Giraud, V. Ghetta, P. Rubiolo et al., Development of a cold plug valve with fluoride salt, EPJ Nuclear Sciences & Technologies, 5, 1-9 (2019). https://doi.org/10.1051/epjn/2019005https://doi.org/10.1051/epjn/2019005
I.K. Aji, T. Tatsuya, M. Kinoshita et al., An experimental study on freeze valve performance in a molten salt reactor, in: the 26th International Conference on Nuclear Engineering, London, England, 2018. https://doi.org/10.1115/ICONE26-81679https://doi.org/10.1115/ICONE26-81679
T. D. Shafer, Dissertation (Design and Melting Behavior of the MSFR Freeze Plug, Faculty Applied Sciences, Delft University of Technology, 2018.)
Q.M. Li, Z.F. Tang, Y. Fu, et al., Preliminary study of the use of freeze-valves for a passive shutdown system in molten salt reactors, in: Twelfth Symposium on Valves, Pumps, and Inservice Testing for Operating and New Reactors, North Bethesda, Maryland, USA, NRC2014-5025, 325-341 (2014). https://doi.org/10.1115/NRC2014-5025https://doi.org/10.1115/NRC2014-5025
Q.M. Li, Z.F. Tang, Y. Fu, et al., Research on thermal and mechanical behaviour of a freeze-valve for molten salt reactor, Nucl. Tech., 36(04), 256-264 (2013). (in Chinese)
S.S. Wang, M. Massone, A. Rineiski et al., Analytical investigation of the draining system for a molten salt fast reactor, in: NUTHOS-11: The 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Operation and Safety, Gyeongju, Korea, 2016
M. Tiberga, D. Shafer, D. Lathouwers et al., Preliminary investigation on the melting behavior of a freeze-valve for the Molten Salt Fast Reactor, Ann. Nucl. Energy, 132, 544-554 (2019). https://doi.org/10.1016/j.anucene.2019.06.039https://doi.org/10.1016/j.anucene.2019.06.039
C.L. Zhao, Q. Yang, X.M. Zhou et al., Experimental study on corrosion of high temperature fiber in molten salt, Nucl. Tech. 41(04), 040605 (2018). https://dx.doi.org/10.11889/j.0253-3219.2018.hjs.41.040605https://dx.doi.org/10.11889/j.0253-3219.2018.hjs.41.040605 (In Chinese)
R.J. Moffat, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci. 1(1), 3-17 (1988). https://doi.org/10.1016/0894-1777(88)90043-Xhttps://doi.org/10.1016/0894-1777(88)90043-X
ANSYS® Academic Research Fluent, Release 14.5, Help System, Fluent User's Guide, ANSYS, Inc.
J. Vogel, A. Thess, Validation of a numerical model with a benchmark experiment for melting governed by natural convection in latent thermal energy storage, App. Therm. Eng. 148, 147-159 (2019). https://doi.org/10.1016/j.applthermaleng.2018.11.032https://doi.org/10.1016/j.applthermaleng.2018.11.032.
S.M. Yang, Z.Z. Zhang, An experimental study of natural convection heat transfer from a horizontal cylinder in high Rayleigh number laminar and turbulent regions, Hewitt G F. Proceedings of the 10th International Heat Transfer Conference. Brigton, 7, 185-189 (1994). https://doi.org/10.1615/IHTC10.3790https://doi.org/10.1615/IHTC10.3790
P. S. Ghahfarokhi, A. Kallaste, T. Vaimann et al., Determination of natural convection heat transfer coefficient over the fin side of a coil system, Int. J. Heat and Mass Transf. 126, 677-682 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.071https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.071
A. Castell, C. Solé, M. Medrano et al., Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins, Appl. Therm. Eng. 28(13), 1676-1686 (2008). https://doi.org/10.1016/j.applthermaleng.2007.11.004https://doi.org/10.1016/j.applthermaleng.2007.11.004
R. R. Romatoski, L. W. Hu, Fluoride salt coolant properties for nuclear reactor applications: A review, Ann. Nucl. Energy, 109, 635-647 (2017). https://doi.org/10.1016/j.anucene.2017.05.036https://doi.org/10.1016/j.anucene.2017.05.036
VDM® Metals, Material Data Sheet of the VDM® Alloy C-276, Germany, 2016.
X.Y. Jiang, N.X. Wang, B. Su et al., Structural design and finite element analysis of a normally-closed finned freeze valve, Nuclear Power Engineering, 2019. http://kns.cnki.net/kcms/detail/51.1158.tl.20190626.1045.003.htmlhttp://kns.cnki.net/kcms/detail/51.1158.tl.20190626.1045.003.html (in Chinese)
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构