Qi Chen, Zheng Gao, Zheng-Long Zhu, 等. Multi-frequency point supported LLRF front-end for CiADS wide-bandwidth application[J]. 核技术(英文版), 2020,31(3):29
Qi Chen, Zheng Gao, Zheng-Long Zhu, et al. Multi-frequency point supported LLRF front-end for CiADS wide-bandwidth application[J]. Nuclear Science and Techniques, 2020,31(3):29
Qi Chen, Zheng Gao, Zheng-Long Zhu, 等. Multi-frequency point supported LLRF front-end for CiADS wide-bandwidth application[J]. 核技术(英文版), 2020,31(3):29 DOI: 10.1007/s41365-020-0733-9.
Qi Chen, Zheng Gao, Zheng-Long Zhu, et al. Multi-frequency point supported LLRF front-end for CiADS wide-bandwidth application[J]. Nuclear Science and Techniques, 2020,31(3):29 DOI: 10.1007/s41365-020-0733-9.
Multi-frequency point supported LLRF front-end for CiADS wide-bandwidth application
摘要
Abstract
The China initiative Accelerator Driven System, CiADS, physics design adopts 162.5 MHz, 325 MHz, and 650 MHz cavities, which are driven by the corresponding radio frequency (RF) power system, requiring frequency translation front-end for the RF station. For that application, a general-purpose design front-end prototype has been developed to evaluate the multi-frequency point supported design feasibility. The difficult parts to achieve the requirements of the general-purpose design are reasonable device selection and balanced design. With a carefully selected low-noise wide-band RF mixer and amplifier to balance the performance of multi-frequency supported down-conversion, specially designed LO distribution net to increase isolation between adjacent channels, and external band-pass filter to realize expected up-conversion frequencies, high maintenance and modular front-end general-purpose design has been implemented. Results of standard parameters show an ,R,2, value of at least 99.991% in the range of -60-10 dBm for linearity, up to 18 dBm for P1dB, and up to 89 dBc for crosstalk between adjacent channels. The phase noise spectrum is lower than 80 dBc in the range of 0-1 MHz, and cumulative phase noise is 0.006°; amplitude and phase stability are 0.022
关键词
Keywords
Frequency jumpRF Front-endLLRFCiADS
references
S. Y. Lee, Accelerator physics. World scientific publishing, 2004. https://doi.org/10.1142/5761doi:10.1142/5761https://doi.org/10.1142/5761doi:10.1142/5761
The History of CERN, (2014). https://doi.org/10.1142/9789814623476_0001https://doi.org/10.1142/9789814623476_0001
P. Tenenbaum, The JLC/NLC Baseline Design, (2003). https://doi.org/10.2172/813165doi:10.2172/813165https://doi.org/10.2172/813165doi:10.2172/813165
G. Xiao, H. Xu, S. Wang, HIAF and CiADS National Research Facilities: Progress and Prospect, Nuclear Physics Review, (2017) 34 275-283. https://dx.doi.org/10.11804/NuclPhysRev.34.03.275https://dx.doi.org/10.11804/NuclPhysRev.34.03.275
A. Gulevich, A. Kalugin, L. Ponomarev, et al. Comparative study of ADS for minor actinides transmutation. Progress in Nuclear Energy, 50(2-6), 359-362 (2008). https://doi.org/10.1016/j.pnucene.2007.11.084https://doi.org/10.1016/j.pnucene.2007.11.084
S.H. Liu, Z.J. Wang, H. Jia et al., Physics design of the CIADS 25 MeV demo facility, NIMA 843, 11 (2017), https://doi.org/10.1016/j.nima.2016.10.055https://doi.org/10.1016/j.nima.2016.10.055
M. Eshraqi, H. Danared, R. Miyamoto, et al., Beam dynamics of the ESS superconducting linac, Proceedings of the 52nd ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, 638, TUO3B02 (2012).
V.K. Verma, K. Katovsky, Major Experimental Facilities for Development of Accelerator-Driven Subcritical System, Spent Nuclear Fuel and Accelerator-Driven Subcritical Systems, Springer, 81-121 (2019), https://doi.org/10.1007/978-981-10-7503-2_6https://doi.org/10.1007/978-981-10-7503-2_6
Z. Li, P. Cheng, H. Geng et al., Physics design of an accelerator for an accelerator-driven subcritical system, Physical Review Special Topics-Accelerators and Beams 16(8), 080101 (2013), https://doi.org/10.1103/PhysRevSTAB.16.080101https://doi.org/10.1103/PhysRevSTAB.16.080101
L. Hardy, Accelerator reliability-availability, Proceedings of EPAC 2002, 149-153 (2002)
P. Corredoura, Architecture and performance of the PEP-II low-level RF system, Proceedings of the 1999 Particle Accelerator Conference (No. 99CH36366) 1, 435-439 (1999), https://doi.org/10.2172/10204https://doi.org/10.2172/10204
A. Schnase, M. Nomura, F. Tamura et al., Control loops for the J-PARC RCS digital low-level RF control, Proceedings of the 2005 Particle Accelerator Conference, IEEE, 1063-1065 (2005), https://doi.org/10.1109/pac.2005.1590659https://doi.org/10.1109/pac.2005.1590659
S. Simrock, Digital Low-Level RF Conctrols for Future Superconducting Linear Colliders, Proceedings of the 2005 Particle Accelerator Conference, IEEE, 515-519 (2005),https://doi.org/10.1109/pac.2005.1590484https://doi.org/10.1109/pac.2005.1590484
Y. He, Z. Wang, Z. Qin et al., Development of accelerator driven advanced nuclear energy (ADANES) and nuclear fuel recycle, 10th Int. Particle Accelerator Conf., Slides
Z. Wang, F. Wang, G. Huang et al., The status of CiADS superconducting linac, 10th Int. Particle Accelerator Conf, 994-997 (2019), https://doi.org/10.18429/JACoW-IPAC2019-MOPTS059https://doi.org/10.18429/JACoW-IPAC2019-MOPTS059
N. Kurosawa, H. Kobayashi, H. Kogure et al., Sampling clock jitter effects in digital-to-analog converters, Measurement 31(3), 187 (2002), https://doi.org/10.1016/s0263-2241(01)00028-8https://doi.org/10.1016/s0263-2241(01)00028-8
Analog Devices, Inc., Active receive mixer low frequency to 3.8 GHz, AD8342 (2016), Rev. C
Analog Devices, Inc., Ultalow distortion differential ADC driver, ADA4937 (2016), Rev. F
U. Mavric, B. Chase, M. Vidmar, Design and evaluation of a low-level RF control system analog/digital receiver for the ILC main LINACs, NIMA, 594 (1), 90 (2008), https://doi.org/10.1016/j.nima.2008.06.002https://doi.org/10.1016/j.nima.2008.06.002
Z. Fu, Y. Zhao, J. Liu, et al. Clock distribution and local oscillator of a digital low-level radio-frequency board for SSRF, Nucl. Sci.Tech. 21, 7-10 (2010). https://doi.org/10.13538/j.1001-8042/nst.21.7-10https://doi.org/10.13538/j.1001-8042/nst.21.7-10
L. Doolittle, H. Ma, M.S. Champion, Digital low-level RF control using non-IQ ampling, Proc. LINAC, 568-570 (2006)
Z.-Q. Geng, R. Kalt. Advanced topics on RF amplitude and phase detection for low-level RF systems. Nucl. Sci. Tech. 30, 146 (2019). https://doi.org/10.1007/s41365-019-0670-7https://doi.org/10.1007/s41365-019-0670-7