1.Engineering Department, NRC, Atomic Energy Authority, P. No. 13759, Inshas, Egypt
engtokhy@gmail.com
Scan for full text
Mohamed S. El_Tokhy. Advanced Algorithms for Retrieving Pileup Peaks of Digital Alpha Spectroscopy Using Antlions and Particle Swarm Optimization[J]. 核技术(英文版), 2020,31(4):37
Mohamed S. El_Tokhy. Advanced Algorithms for Retrieving Pileup Peaks of Digital Alpha Spectroscopy Using Antlions and Particle Swarm Optimization[J]. Nuclear Science and Techniques, 2020,31(4):37
Mohamed S. El_Tokhy. Advanced Algorithms for Retrieving Pileup Peaks of Digital Alpha Spectroscopy Using Antlions and Particle Swarm Optimization[J]. 核技术(英文版), 2020,31(4):37 DOI: 10.1007/s41365-020-0745-5.
Mohamed S. El_Tokhy. Advanced Algorithms for Retrieving Pileup Peaks of Digital Alpha Spectroscopy Using Antlions and Particle Swarm Optimization[J]. Nuclear Science and Techniques, 2020,31(4):37 DOI: 10.1007/s41365-020-0745-5.
Optimization algorithms are applied to resolve the second-order pileup (SOP) issue from high counting rates occurring in digital alpha spectroscopy. These are antlion optimizer-(ALO) and particle swarm optimization-(PSO) algorithms. Both optimization algorithms are coupled to one of three proposed peak finder algorithms. Three custom time-domain algorithms are proposed for retrieving SOP peaks, namely peak seek, slope tangent, and fast array algorithms. In addition, an average combinational algorithm is applied. The time occurrence of the retrieved peaks is tested for an elimination of illusive pulses. Conventional methods are inaccurate and time consuming. ALO and PSO optimizations are used for the localization of retrieved peaks. Optimum cost values that achieve the best fitness values are demonstrated. Thus, the optimum positions of the detected peak heights are achieved. Evaluation metrics of the optimized algorithms and their influences on the retrieved peaks parameters are established. Comparisons among such algorithms are investigated, and the algorithms are inspected in terms of their computational time and average error. The peak seek algorithm achieves the lowest average computational error for pulse parameters (amplitude and position). However, the fast array algorithm introduces the largest average error for pulse parameters. In addition, the peak seek algorithm coupled with an ALO or PSO algorithm is observed to realize a better performance in terms of the optimum cost and computational time. By contrast, the performance of the peak seek recovery algorithm is improved using the PSO. Furthermore, the computational time of the peak optimization using the PSO is much better than that of the ALO algorithm. As a final conclusion, the accuracy of the peaks detected by the PSO surpasses that for the peaks detected by the ALO. The implemented peak retrieval algorithms are validated through a comparison with experimental results from previous studies. The proposed algorithms achieve a notable precision for compensation of the SOP peaks within the alpha ray spectroscopy at a high counting rate.
Alpha spectrometry instrumentSecond-order pileupSignal processingOptimization algorithms
A. Alessandrello, C. Broerio, O. Cremonesi, et al., A massive thermal detector for alpha and gamma spectroscopy. Nucl. Instr. and Methods in Phys. Resear. A. 440, 397-402 (2000). https://doi.org/10.1016/S0168-9002(99)00928-6https://doi.org/10.1016/S0168-9002(99)00928-6
J. Janda, L. Fiserova, Thermal neutron detection using alpha/beta-gamma discrimination circuit., Radia. Physics and Chem. 156, 109-114 (2019). https://doi.org/10.1016/j.radphyschem.2018.11.007https://doi.org/10.1016/j.radphyschem.2018.11.007
T.R. Garcia, B. Reinke, W. Windl, et al., Alpha spectroscopy for in-situ liquid radioisotope measurements. Nucl. Instr. and Methods in Phys. Resear. A. 780, 119-126 (2015). https://doi.org/10.1016/j.nima.2014.12.062https://doi.org/10.1016/j.nima.2014.12.062
C. Charalambous, M. Aletrari, P. Piera, et al., Uranium levels in Cypriot groundwater samples determined by ICP-MS and α-spectroscopy. J. of Env. Radioact. 116, 187-192 (2013). https://doi.org/10.1016/j.jenvrad.2012.10.008https://doi.org/10.1016/j.jenvrad.2012.10.008
F. Pollastrone, G.C. Cardarilli, M. Riva, et al., A clustering algorithm for scintillator signals applied to neutron and gamma patterns identification. Fusion Engin. and Design. 146(Part B), 2110-2114 (2019). https://doi.org/10.1016/j.fusengdes.2019.03.117https://doi.org/10.1016/j.fusengdes.2019.03.117
A.J. Crompton, K.A.A. Gamage, A. Jenkins, et al., Alpha particle detection using alpha-induced air radioluminescence: A review and future prospects for preliminary radiological characterization for nuclear facilities decommissioning. Sensors. 18(14), 1015 (2018) [https://doi.org/10.3390/s18041015https://doi.org/10.3390/s18041015]
P.S. Lee, C.S. Lee, J.H. Lee, Development of FPGA-based digital signal processing system for radiation spectroscopy. Radia. Measurem. 48, 12-17 (2013). https://doi.org/10.1016/j.radmeas.2012.11.018https://doi.org/10.1016/j.radmeas.2012.11.018
A. Stamatopoulos, M. Diakaki, A. Tsinganis, et al., An alternative methodology for high counting-loss corrections in neutron time-of-flight measurements. Nuclear Inst. and Methods in Physics Research, A. 913, 40-47 (2019). https://doi.org/10.1016/j.nima.2018.10.032https://doi.org/10.1016/j.nima.2018.10.032
X.L. Luo, V. Modamio, J. Nyberg, et al., Pulse pile-up identification and reconstruction for liquid scintillator based neutron detectors. Nucl. Instr. and Methods in Phys. Resear. A. 897, 59-65 (2018). https://doi.org/10.1016/j.nima.2018.03.078https://doi.org/10.1016/j.nima.2018.03.078
A.A. Mowlavi and M.H.H. Yazdi, Monte Carlo simulation of pulse pile-up effect in gamma spectrum of a PGNAA system. Nucl. Instr. and Methods in Phys. Resear. A. 660(1), 104-107 (2011). https://doi.org/10.1016/j.nima.2011.09.022https://doi.org/10.1016/j.nima.2011.09.022
D.C. -Ott, J.L. Tain, A. Gadea, et al., Pulse pileup correction of large NaI(Tl) total absorption spectra using the true pulse shape. Nucl. Instr. and Methods in Phys. Resear. A. 430(2-3), 488-497 (1999). https://doi.org/10.1016/S0168-9002(99)00216-8https://doi.org/10.1016/S0168-9002(99)00216-8
S. Pomme, How pileup rejection affects the precision of loss-free counting. Nucl. Instr. and Methods in Phys. Resear. A. 432(2-3), 456-470 (1999). https://doi.org/10.1016/S0168-9002(99)00475-1https://doi.org/10.1016/S0168-9002(99)00475-1
C. Guerrero, D.C. -Ott, E. Mendoza, et al., Correction of dead-time and pile-up in a detector array for constant and rapidly varying counting rates. Nucl. Instr. and Methods in Phys. Resear. A. 777, 63-69 (2015). https://doi.org/10.1016/j.nima.2014.12.008https://doi.org/10.1016/j.nima.2014.12.008
D.C. -Ott, J.L. Tain, A. Gadea, et al., Pulse pileup correction of large NaI(Tl) total absorption spectra using the true pulse shape. Nucl. Instr. and Methods in Phys. Resear. A. 430, 488-497 (1999). [https://doi.org/10.1016/S0168-9002(99)00216-8https://doi.org/10.1016/S0168-9002(99)00216-8]
G.F. Knoll, Radiation detection and measurement. The 3rd edition, John Wiley & Sons, New Jersey (2000).
S. Usman, A. Patil, Radiation detector deadtime and pile up: A review of the status of science. Nucl. Engineering and Technology. 50(7), 1006-1016 (2018). [https://doi.org/10.1016/j.net.2018.06.014https://doi.org/10.1016/j.net.2018.06.014].
R. Grzywacz, Applications of digital pulse processing in nuclear spectroscopy. Nucl. Instr. and Methods in Phys. Resear. B. 204, 649-659 (2003). [https://doi.org/10.1016/S0168-583X(02)02146-8https://doi.org/10.1016/S0168-583X(02)02146-8]
Z. Huaiqiang, G. Liangquan, T. Bin, et al., Optimal choice of trapezoidal shaping parameters in digital nuclear spectrometer system. Nucl. Science and Techniques, 24, 060407-1-0604076 (2013).
C.T. Angell, Pulse pileup correction in the presence of a large low-energy background. Jour. of Nucl. Science and Technology, 52(3), 426-433 (2015). [https://doi.org/10.1080/00223131.2014.955067https://doi.org/10.1080/00223131.2014.955067]
M.W. Raad, M. Deriche, J. Noras, et al., A novel approach for pileup detection in gamma-ray spectroscopy using deconvolution. Measurement Science and Techn. 19, 065601 (2008). [https://doi.org/10.1088/0957-0233/19/6/065601https://doi.org/10.1088/0957-0233/19/6/065601]
M. Bolic, V. Drndarevic, W. Gueaieb, Pileup correction algorithms for very-high-count-rate gamma-ray spectrometry with NaI(Tl) detectors. IEEE Transactions on Instrumentation and Measurem. 59(1), 122-130 (2010). https://doi.org/10.1109/TIM.2009.2022107https://doi.org/10.1109/TIM.2009.2022107
E. Barat, T. Dautremer, T. Montagu, J.-C. Trama. A bimodal kalman smoother for nuclear spectrometry. Nucl. Instrum. Methods A. 567, 350-352 (2006) [https://doi.org/10.1016/j.nima.2006.05.243https://doi.org/10.1016/j.nima.2006.05.243]
R. Coulon, S. Normand, G. Ban, et al. Delayed gamma power measurement for sodium-cooled fast reactors. Nuclear Engineering and Design. 241, 339-348 (2011) [https://doi.org/10.1016/j.nucengdes.2010.10.002https://doi.org/10.1016/j.nucengdes.2010.10.002]
C. Qu, H. Yang, J. Cai, et al., DoPS: A double-peaked profiles search method on the RS and SVM. IEEE Access. 7, 106139-106154 (2019). [https://doi.org/10.1109/ACCESS.2019.2927251https://doi.org/10.1109/ACCESS.2019.2927251]
F. Belli, B. Esposito, D. Marocco, et al., Jet Efda Contributors, A method for digital processing of pile-up events in organic scintillators. Nucl. Instr. and Methods in Phys. Resear. A. 595, 512-519 (2008). https://doi.org/10.1016/j.nima.2008.06.045https://doi.org/10.1016/j.nima.2008.06.045
K.M. Langen, P.J. Binns, A.J. Lennox, et al., Pileup correction of microdosimetric spectra. Nucl. Instr. and Methods in Phys. Resear. A. 484(1-3), 595-612 (2002). https://doi.org/10.1016/S0168-9002(01)02014-9https://doi.org/10.1016/S0168-9002(01)02014-9
S.M. Robinson, S. Stave, A. Lintereur, et al., Neutron pileup algorithms for multiplicity counters. Nucl. Instr. and Methods in Phys. Resear. A. 748, 293-297 (2014). https://doi.org/10.1016/j.nima.2014.11.112https://doi.org/10.1016/j.nima.2014.11.112
M. Asai, F.P. Heßberger, A.L. -Martens, Nuclear structure of elements with 100 ≤ Z ≤109 from alpha spectroscopy. Nuclear Physics A. 944, 308-332 (2015). https://doi.org/10.1016/j.nuclphysa.2015.06.011https://doi.org/10.1016/j.nuclphysa.2015.06.011
J. Pechousek, D. Konecny, P. Novak, et al., Software emulator of nuclear pulse generation with different pulse shapes and pile-up. Nucl. Nucl. Instr. and Methods in Phys. Resear. A. 828, 81-85 (2016). https://doi.org/10.1016/j.nima.2016.05.032https://doi.org/10.1016/j.nima.2016.05.032
X. Zhong, L. Chen, B. Wang, et al., A spectrometer with baseline correction and fast pulse pile-up rejection for prompt gamma neutron activation analysis technology. Review of Scientific Instruments, 89, 123504-1-123504-8 (2018). [https://doi.org/10.1063/1.5049517https://doi.org/10.1063/1.5049517]
T. O'Haver, An introduction to signal processing in chemical analysis. University of Maryland, College Park, 1-45 (2009).
H. Kılıc, U. Yuzgec, Improved antlion optimization algorithm via tournament selection and its application to parallel machine scheduling. Computers & Industrial Engineering, 132, 166-186 (2019). [https://doi.org/10.1016/j.cie.2019.04.029https://doi.org/10.1016/j.cie.2019.04.029]
S. Mirjalili, The ant lion optimizer. Advances in Engineering Software. 83, 80-98 (2015). [https://doi.org/10.1016/j.advengsoft.2015.01.010https://doi.org/10.1016/j.advengsoft.2015.01.010]
H. Kılıc, U. Yuzgec, Tournament selection based antlion optimization algorithm for solving quadratic assignment problem. Engineering Science and Technology, an International Journal, 22, 673-691 (2019). [https://doi.org/10.1016/j.jestch.2018.11.013https://doi.org/10.1016/j.jestch.2018.11.013]
H. Qi, L.M. Ruan, M. Shi, et al., Application of multi-phase particle swarm optimization technique to inverse radiation problem. J. of Quantitative Spectroscopy & Radiative Transfer. 109(3), 476-493 (2008). https://doi.org/10.1016/j.jqsrt.2007.07.013https://doi.org/10.1016/j.jqsrt.2007.07.013
H. Shahabinejad, N. Vosoughi, Analysis of complex gamma-ray spectra using particle swarm optimization. Nucl. Instr. and Methods in Phys. Resear. A. 911, 123-130 (2018). https://doi.org/10.1016/j.nima.2018.09.156https://doi.org/10.1016/j.nima.2018.09.156
H. Shahabinejad, M. Sohrabpour, A novel neutron energy spectrumunfolding code using particle swarm optimization. Radiation Physics and Chem., 136, 9-16(2017). https://doi.org/10.1016/j.radphyschem.2017.03.033https://doi.org/10.1016/j.radphyschem.2017.03.033
H. Ajdad, Y.F. Baba, A.A. Mers, et al., Particle swarm optimization algorithm for optical-geometric optimization of linear fresnel solar concentrators. Renew. Energ. 130, 992-1001(2018). https://doi.org/10.1016/j.renene.2018.07.001https://doi.org/10.1016/j.renene.2018.07.001
D.-W. Lim, C.-W. Lee, J.-Y. Lim, et al., On the particle swarm optimization of cask shielding design for a prototype sodium-cooled fast reactor. Nucl. Engin. and Techn., 51(1), 284-292 (2019). https://doi.org/10.1016/j.net.2018.09.007https://doi.org/10.1016/j.net.2018.09.007
J. Yang, P. Zhang, L. Zhang, et al., Particle swarm optimizer for weighting factor selection in intensity modulated radiation therapy optimization algorithms. Physica Medica. 33, 136-145 (2017). https://doi.org/10.1016/j.ejmp.2016.12.021https://doi.org/10.1016/j.ejmp.2016.12.021
S. Ghimire, R.C. Deo, N. Raj, et al., Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction. Renew. and Sustain. Ener. Reviews. 113, 109247 (2019). https://doi.org/10.1016/j.rser.2019.109247https://doi.org/10.1016/j.rser.2019.109247
K. Lam, W. Zhang, Gamma peak search and peak fitting algorithm for a low-resolution detector with applications in gamma spectroscopy. J. Radioanalytical Nucl. Chem. 322(2), 255-261 (2019). https://doi.org/10.1007/s10967-019-06760-xhttps://doi.org/10.1007/s10967-019-06760-x
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构