1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
Corresponding author, guduan@zjlab.org.cn
Scan for full text
You-Wei Gong, Meng Zhang, Wei-Jie Fan, 等. Beam performance of the SHINE dechirper[J]. 核技术(英文版), 2021,32(3):29
You-Wei Gong, Meng Zhang, Wei-Jie Fan, et al. Beam performance of the SHINE dechirper[J]. Nuclear Science and Techniques, 2021,32(3):29
You-Wei Gong, Meng Zhang, Wei-Jie Fan, 等. Beam performance of the SHINE dechirper[J]. 核技术(英文版), 2021,32(3):29 DOI: 10.1007/s41365-021-00860-8.
You-Wei Gong, Meng Zhang, Wei-Jie Fan, et al. Beam performance of the SHINE dechirper[J]. Nuclear Science and Techniques, 2021,32(3):29 DOI: 10.1007/s41365-021-00860-8.
A corrugated structure is built and tested on many FEL facilities, providing a ’dechirper’ mechanism for eliminating energy spread upstream of the undulator section of X-ray FELs. The wakefield effects are here studied for the beam dechirper at the Shanghai high repetition rate XFEL and extreme light facility (SHINE), and compared with analytical calculations. When properly optimized, the energy spread is well compensated. The transverse wakefield effects are also studied, including the dipole and quadrupole effects. By using two orthogonal dechirpers, we confirm the feasibility of restraining the emittance growth caused by the quadrupole wakefield. A more efficient method is thus proposed involving another pair of orthogonal dechirpers.
Corrugated structureEnergy spreadWakefieldShanghai high repetition rate XFEL and extreme light facility
K. L. F. Bane, G. Stupakov, Corrugated Pipe as a Beam Dechirper. Nucl. Instrum. Meth. A 690, 106-110 (2012) doi: 10.2172/1038704http://doi.org/10.2172/1038704
M. Harrison, G. Andonian, T. Campese, et al., Removal of residual chirp in compressed beams using a passive wakefield technique. Proc. North American Particle Accelerator Conf. 291-293 (2013). https://accelconf.web.cern.ch/pac2013/papers/mopho25.pdf
P. Emma, M. Venturini, K. Bane et al., Experimental demonstration of energy-chirp control in relativistic electron bunches using a corrugated pipe. Phys. Rev. Lett. 112, 034801 (2014). doi: 10.1103/PhysRevLett.112.034801http://doi.org/10.1103/PhysRevLett.112.034801
F. C. Fu, R. Wang, P. F. Zhu, Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures. Phys. Rev. Lett. 114, 114801 (2015). doi: 10.1103/PhysRevLett.114.114801http://doi.org/10.1103/PhysRevLett.114.114801
F. C. Fu, R. Wang, P. F. Zhu, et al., Time-resolved measurement of quadrupole wakefields in corrugated structures Phys. Rev. Accel. Beams 19, 020706 (2016). doi: 10.1103/PhysRevAccelBeams.19.020706http://doi.org/10.1103/PhysRevAccelBeams.19.020706
M. W. Guetg, K. Bane, A. Brachmann, et al., Commissioning of the RadiaBeam. IPAC-2016-Conference (2016). doi: 10.18429/JACoW-IPAC2016-MOPOW044http://doi.org/10.18429/JACoW-IPAC2016-MOPOW044
S. Bettoni, P. Craievich, R. Ganter, et al. Beam Manipulation using self-induced fields in theSwissFEL injector. 9th International Particle Accelerator Conference, IPAC2018, Vancouver, BC, Canada, May 3, 2018. http://jacow.org/ipac2018/papers/thpak074.pdf doi: 10.18429/JACoW-IPAC2018-THPAK074http://doi.org/10.18429/JACoW-IPAC2018-THPAK074
Z. Wang, C. Feng, D. Huang, et al., Nonlinear energy chirp compensation with corrugated structures. Nucl. Sci. Tech. 29, 175 (2018). doi: 10.1007/s41365-018-0512-zhttp://doi.org/10.1007/s41365-018-0512-z
Q. Gu, M. H. Zhao, M. Zhang, A Passive Linearizer for Bunch Compression. Linac, Proceedings of LINAC2012, Tel-aviv, Israel, 2012 https://accelconf.web.cern.ch/LINAC2012/papers/tupb022.pdf
H. X. Deng, M. Zhang, C. Feng, et al., Experimental demonstration of longitudinal beam phase-space linearizer in a free-electron laser facility by corrugated structures. Phys. Rev. Lett. 113, 254802 (2014). doi: 10.1103/PhysRevLett.113.254802http://doi.org/10.1103/PhysRevLett.113.254802
S. Jimin, C. Moses, S. K. Heung, et al., Use of a corrugated beam pipe as a passive deflector for bunch length measurements. Phys. Rev. Accel. Beams 21, 022801 (2018). doi: 10.1103/PhysRevAccelBeams.21.022801http://doi.org/10.1103/PhysRevAccelBeams.21.022801
S. Bettoni, E. Prat, S. Reiche, Two-color beam generation based on wakefield excitation. Phys. Rev. Accel. Beams 19, 050702 (2016). doi: 10.1088/0954-3899/40/12/125106http://doi.org/10.1088/0954-3899/40/12/125106
A. Lutman, T. Maxwell, J. MacArthur, et al., Fresh-slice multicolour X-ray free-electron lasers. Nature Photon 10, 745-750 (2016). doi: 10.1038/nphoton.2016.201http://doi.org/10.1038/nphoton.2016.201
K. Bane, M. Fedurin, A. Sergey, Measurements of terahertz generation in a metallic, corrugated beam pipe. AIP Conference Proceedings (2016). doi: 10.1063/1.4965647http://doi.org/10.1063/1.4965647
Y. X. Zhang, J. F. Chen, D. Wang, RF design optimization for the SHINE 3.9 GHz cavity. Nucl. Sci. Tech. 31, 73 (2020) doi: 10.1007/s41365-020-00772-zhttp://doi.org/10.1007/s41365-020-00772-z
G. Stupakov, K. L. F. Bane, Surface impedance formalism for a metallic beam pipe with small corrugations. Phys. Rev. ST Accel. Beams 15, 124401 (2012). doi: 10.1103/PhysRevSTAB.15.124401http://doi.org/10.1103/PhysRevSTAB.15.124401
K. L. F. Bane, G. Stupakov, Impedance of a rectangular beam tube with small corrugations. Phys. Rev. ST Accel. Beams 6, 024401 (2013). doi: 10.1103/PhysRevSTAB.6.024401http://doi.org/10.1103/PhysRevSTAB.6.024401
K. L. F. Bane, G. Stupakov, Using surface impedance for calculating wakefields in flat geometry. Phys. Rev. ST Accel. Beams 18, 034401 (2015). doi: 10.1103/10.1103/PhysRevSTAB.18.034401http://doi.org/10.1103/10.1103/PhysRevSTAB.18.034401
K. Bane, G. Stupakov, I. Zagorodnov, Analytical formulas for short bunch wakes in a flat dechirper. Phys. Rev. Accel. Beams 19, 084401 (2016). doi: 10.1103/PhysRevAccelBeams.19.084401http://doi.org/10.1103/PhysRevAccelBeams.19.084401
R. Gluckstern, Longitudinal impedance of a periodic structure at high frequency. Phys. Rev. D 39, 2780 (1989). doi: 10.1103/PhysRevD.39.2780http://doi.org/10.1103/PhysRevD.39.2780
G. Stupakov, Coupling impedance of a periodic array of diaphrams. Proceedings of the Particle Accelerator Conference, 5, 3303-3305 (1995). doi: 10.1109/PAC.1995.505862http://doi.org/10.1109/PAC.1995.505862
K. Yokoya, K. Bane, The longitudinal high frequency impedance of a periodic accelerating structure. IPAC-1999-Conference, p. 1725 (1999). https://www.researchgate.net/publication/3815913_The_longitudinal_high-frequency_impedance_of_a_periodic_accelerating_structure doi: 10.1109/PAC.1999.794235http://doi.org/10.1109/PAC.1999.794235
I. Zagorodnov, K. L. F. Bane, G. Stupakov, Calculation of wakefields in 2D rectangular structures, Phys. Rev. ST Accel. Beams 18, 104401 (2015). doi: 10.1103/PhysRevSTAB.18.104401http://doi.org/10.1103/PhysRevSTAB.18.104401
I. S. Ko, W. Chou, Beam Dynamics Newsletter. International Committee for Future Accelerators (2005). https://www-bd.fnal.gov/icfabd/Newsletter38.pdf
A. W. Chao, M. K. H. Mess, M. Tigner, et al., Handbook of Accelerator Physics and Engineering, P73 (2013). https://www.worldscientific.com/worldscibooks/10.1142/8543 doi: 10.1142/8543http://doi.org/10.1142/8543
K. Bane, G. Stupakov, Dechirper Wakefields for Short Bunches. Nucl. Instrum. Meth. A 820, 156-163 (2016). doi: 10.1016/j.nima.2016.02.055http://doi.org/10.1016/j.nima.2016.02.055
Z. Zhang, B. Karl, Y. T. Ding, et al., Electron beam energy chirp control with a rectangular corrugated structure at the Linac Coherent Light Source. Phys. Rev. ST Accel. Beams 18, 010702 (2015). doi: 10.1103/PhysRevSTAB.18.010702http://doi.org/10.1103/PhysRevSTAB.18.010702
M. Borland, ELEGANT: A flexible SDDS-compliant code for accelerator simulation. Adv Phot Source LS-287, United States, 2000. doi: 10.2172/761286http://doi.org/10.2172/761286
K.L.F. Bane, G. Stupakov, What limits the gap in a flat dechirper for an X-ray FEL, SLAC-PUB15852, United States, 2013. doi: 10.2172/1110631http://doi.org/10.2172/1110631
M. H. Blewett, A. Zichichi, K. Johnsen, Theoretical aspects of the behavior of beams in accelerators and storage rings, p34 (1977). https://cds.cern.ch/record/118362/files/CERN-77-13.pdf doi: 10.5170/CERN-1977-013http://doi.org/10.5170/CERN-1977-013
0
浏览量
15
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构