1.Chengdu University of Technology College of Engineering Technology, Leshan Sichuan 614000, China
2.Southwest Institute of Physics, Chengdu 610225, China
3.Chengdu University, Chengdu 610106, China
4.Chengdu University of Technology, Chengdu 610225, China
Corresponding author, 690870641@qq.com
Scan for full text
Zhuo Zuo, Hao-Ran Liu, Yu-Cheng Yan, 等. Adaptability of n–γ discrimination and filtering methods based on plastic scintillation[J]. 核技术(英文版), 2021,32(3):28
Zhuo Zuo, Hao-Ran Liu, Yu-Cheng Yan, et al. Adaptability of n–γ discrimination and filtering methods based on plastic scintillation[J]. Nuclear Science and Techniques, 2021,32(3):28
Zhuo Zuo, Hao-Ran Liu, Yu-Cheng Yan, 等. Adaptability of n–γ discrimination and filtering methods based on plastic scintillation[J]. 核技术(英文版), 2021,32(3):28 DOI: 10.1007/s41365-021-00865-3.
Zhuo Zuo, Hao-Ran Liu, Yu-Cheng Yan, et al. Adaptability of n–γ discrimination and filtering methods based on plastic scintillation[J]. Nuclear Science and Techniques, 2021,32(3):28 DOI: 10.1007/s41365-021-00865-3.
Neutrons have been extensively used in many fields, such as nuclear physics, biology, geology, medical science, and national defense, owing to their unique penetration characteristics. Gamma rays are usually accompanied by the detection of neutrons. The capability to discriminate neutrons from gamma rays is important for evaluating plastic scintillator neutron detectors because similar pulse shapes are generated from both forms of radiation in the detection system. The pulse signals measured by plastic scintillators contain noise, which decreases the accuracy of n–γ discrimination. To improve the performance of n–γ discrimination, the noise of the pulse signals should be filtered before the n–γ discrimination process. In this study, the influences of the Fourier transform, wavelet transform, moving-average filter, and Kalman algorithm on the charge comparison method, fractal spectrum method, and back-propagation neural network methods were studied. It was found that the Fourier transform filtering algorithm exhibits better adaptability to the charge comparison method than others, with an increasing accuracy of 6.87% compared to that without the filtering process. Meanwhile, the Kalman filter offers an improvement of 3.04% over the fractal spectrum method, and the adaptability of the moving-average filter in back-propagation neural network discrimination is better than that in other methods, with an increase of 8.48%. The Kalman filtering algorithm has a significant impact on the peak value of the pulse, reaching 4.49%, and has an insignificant impact on the energy resolution of the spectrum measurement after discrimination.
Fourier transformWavelet transformMoving averageKalman filterCharge comparison methodFractal spectrum methodBack-propagation neural network
B. Tang, J. Cai, W.B. Huang et al., Experimental study of silicon carbide neutron detectors. Journal of Radiation Research and Radiation Processing,38(5), 67-72 (2020) https://dx.chinadoi.cn/10.11889/j.1000-3436.2020.rrj.38.050702 (in Chinese)
T.M. Shen, J.M. Chen, W.J. Li, A method for material identification based on X-ray dual-energy backscatter detection. Nuclear Techniques, 42(6), 060201 (2019) http://dx.chinadoi.cn/10.11889/j.0253-3219.2019.hjs.42.060201(in Chinese)
D.D. Zhou, S.M. You, J. Xin et al. Development of a 4π-phoswich detector for measuring radioactive inert gases. Nuclear Techniques, 43(5), 050401 (2020) http://dx.chinadoi.cn/10.11889/j.0253-3219.2020.hjs.43.050401 (in Chinese)
J. Zeng, Q.P. Xiang, Y.Z. Zhang et al. Neutron detection efficiency and gamma discrimination of boron-coated straw detectors. Nuclear Techniques, 42(7), 070401 (2019) http://dx.chinadoi.cn/10.11889/j.0253-3219.2019.hjs.42.070401 (in Chinese)
S.A. Pozzi, M.M. Bourne, S.D. Clarke, Pulse shape discrimination in the plastic scintillator EJ-299-33. Nucl. Instrum. Methods Physics Research A,723,19-23 (2013). doi: 10.1016/j.nima.2013.04.085http://doi.org/10.1016/j.nima.2013.04.085
L. Chang, Y. Liu, D.U. Long et al. Pulse shape discrimination and energy calibration of EJ301 liquid scintillation detector. Nuclear Techniques 38 020501(2015) doi: 10.11889/j.0253-3219.2015.hjs.38.020501http://doi.org/10.11889/j.0253-3219.2015.hjs.38.020501(in Chinese)
X. Zhang, X. Yuan, X.F. Xie et al. Digital delay-line-shaping method for pulse shape discrimination in stilbene neutron detectors and application to fusion neutron measurement at the HL-2A tokamak. Nucl. Instrum. Methods Physics Research Section A, 687,7-13 (2012). DOI: 10.1016/j.nima.2012.05.077http://doi.org/10.1016/j.nima.2012.05.077
S.A. Pozzi, M.M. Bourne, J.L. Dolan et al. Plutonium metal vs. oxide determination with the pulse-shape-discrimination-capable plastic scintillator EJ-299-33. Nucl. Instrum. Methods Physics Research A, 767,188-192 (2014). doi: 10.1016/j.nima.2014.08.002http://doi.org/10.1016/j.nima.2014.08.002
M.Z. Liu, B.Q. Liu, Z. Zuo et al. A fractal spectrum approach for neutron and gamma pulse shape discrimination was supported by the National Natural Science Foundation of China (41274109), Sichuan Youth Science and Technology Innovation Research Team (2015TD0020), Scientific and Technology. Chinese Physics C,40, 066201(2016). http://iopscience.iop.org/article/10.1088/1674-1137/40/6/066201
D.I. Shippen, M.J. Joyce, M.D. Aspinall, A wavelet packet transform inspired method of neutron-gamma discrimination. IEEE T. Nucl. Sci.57, 2617-2624 (2009). doi: 10.1109/TNS.2010.2044190http://doi.org/10.1109/TNS.2010.2044190
X. Chen, R. Liu, X.X. Lu et al. Analysis of the three digital n/y discrimination algorithms for liquid scintillation neutron spectrometry. Radiation Measurements,49,13-18 (2013). doi: 10.1016/j.radmeas.2012.12.010http://doi.org/10.1016/j.radmeas.2012.12.010
K.A.A. Gamage, M.J. Joyce, N.P. Hawkes, A comparison of four different digital algorithms for pulse-shape discrimination in fast scintillators. Nucl. Instrum.Methods Physics Research A, 642,78-83 (2011). doi: 10.1016/j.nima.2011.03.065http://doi.org/10.1016/j.nima.2011.03.065
T. Tambouratzis, D. Chernikova, I. Pázsit, A comparison of artificial neural network performance: The case of neutron/gamma pulse shape discrimination. IEEE Symposium on Computational Intelligence for Security and Defense Applications. 88-95 (2013). doi: 10.1109/CISDA.2013.6595432http://doi.org/10.1109/CISDA.2013.6595432
N. Yildiz, S. Akkoyun, Neural network consistent empirical physical formula construction for neutron–gamma discrimination in gamma ray tracking. Annals of Nuclear Energy, 51,10-17 (2013). doi: 10.1016/j.anucene.2012.07.042http://doi.org/10.1016/j.anucene.2012.07.042
B. Deng, R. Tao, Q.I. Lin et al. Fractional Fourier transform and time-frequency filtering. Systems Engineering and Electronics, 26(10),1357-1405 (2004). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTYD200410008.htm (in Chinese)
T.G. Payne, A.D. Southam, T.N. Arvanitis et al. A signal filtering method for improved quantification and noise discrimination in Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data. J. Am. Soc. Mass. Spectrom, 20,1087-1095 (2009). doi: 10.1016/j.jasms.2009.02.001http://doi.org/10.1016/j.jasms.2009.02.001
S. Hosur, A.H. Tewfik, Wavelet transform domain adaptive FIR filtering. IEEE T.Signal Processing, 45, 617-630 (1997). doi: 10.1109/78.558477http://doi.org/10.1109/78.558477
H. Singh, R. Mehra, Discrete wavelet transform method for high flux n–γ discrimination with liquid scintillators. IEEE T. Nucl. Sci. 64,1-7 (2017). doi: 10.1109/TNS.2017.2708602http://doi.org/10.1109/TNS.2017.2708602
J.A. Burns, E.M. Cliff, C. Rautenberg, A distributed parameter control approach to optimal filtering and smoothing with mobile sensor networks.Conference on Control & Automation. (2009). doi: 10.1109/MED.2009.5164536http://doi.org/10.1109/MED.2009.5164536
Y. Zheng, S. Chen, W. Tan et al. Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and a kalman filter. IEEE Transactions on Ultrasonics, Ferroelectrics, Frequency Control, 54, 290-300 (2007). doi: 10.1109/TUFFC.2007.243http://doi.org/10.1109/TUFFC.2007.243
DEMON Collaboration, M. Moszynski, G. Bizard et al., Study of n-γ discrimination by digital charge comparison method for a large volume liquid scintillator. Nucl. Instrum. Methods Physics Research A, 317, 262-272 (1992). DOI: 10.1016/0168-9002(92)90617-Dhttp://doi.org/10.1016/0168-9002(92)90617-D
Michael Barnsley. Fractals Everywhere. The American Mathematical Monthly, 97, 266-268 (1990). DOI: 10.2307/2324711http://doi.org/10.2307/2324711
B.B. Mandelbrot, W.H. Freeman and Company. Fractal geometry of nature. The College Mathematics Journal 15, 175-177 (1984). DOI: 10.2307/2686529http://doi.org/10.2307/2686529
J.W. Cooley, P.A.W. Lewis, P.D. Welch, The fast fourier transform and its applications. IEEE T. Education, 12, 27-34 (1969). DOI: 10.1109/TE.1969.4320436http://doi.org/10.1109/TE.1969.4320436
A.T.C. Goh, Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9, 143-151 (1995). DOI: 10.1016/0954-1810(94)00011-Shttp://doi.org/10.1016/0954-1810(94)00011-S
J.B. Allen, Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Transactions on Acoustics,Speech, and Signal Processing 25, 235-238(1977). DOI: 10.1109/TASSP.1977.1162950http://doi.org/10.1109/TASSP.1977.1162950
Y.S. Xu, J.B. Weaver, D.M. Healy, et al., Wavelet transform domain filters: a spatially selective noise filtration technique. IEEE T. Image processing, 3,747-758(1994). DOI: 10.1109/83.336245http://doi.org/10.1109/83.336245
I. Daubechies, The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36, 961-1005 (1990). DOI: 10.1109/18.57199http://doi.org/10.1109/18.57199
A. Loukas, A. Simonetto, G. Leus, Distributed autoregressive moving average graph filters. IEEE Signal Processing Letters 22, 1931-1935 (2015). DOI: 10.1109/LSP.2015.2448655http://doi.org/10.1109/LSP.2015.2448655
J.Y. Wang, J. Liang, F. Gao et al., A method to improve the dynamic performance of a moving average filter-based PLL. IEEE T.Power Electronics, 30, 5978-5990 (2015). DOI: 10.1109/TPEL.2014.2381673http://doi.org/10.1109/TPEL.2014.2381673
J.L. Anderson. An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev. 129(12), 2884-2903,(2001).
S.J. Julier, J.K. Uhlmann. New extension of the Kalman filter to nonlinear systems. Proc. SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI,28 July 1997. doi: 10.1117/12.280797http://doi.org/10.1117/12.280797
G. Burgers, P.J.V. Leeuwen, G. Evensen, Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev. 126(6), 1719-1724,(1998).
J. B. Birks, The Theory and Practice of Scintillation Counting: International Series of Monographs in Electronics and Instrumentation, (1964). doi: 10.1016/C2013-0-01791-4http://doi.org/10.1016/C2013-0-01791-4
R. Coulon, M. Becht, J. Dumazert et al, Simulation of Scintillation Signal as a Help in Phoswich Systems Conception, IEEE Nuclear Science Symposium, Medical Imaging Conference, Atlanta, GA, USA, 21-28 Oct. 2017. doi: 10.1109/NSSMIC.2017.8533083http://doi.org/10.1109/NSSMIC.2017.8533083
B. D’Mellow, M.D. Aspinall, R.O. Mackin et al. Digital discrimination of neutrons and γ-rays in liquid scintillators using pulse gradient analysis. Nuclear Inst & Methods in Physics Research A, 578,191-197 (2007). doi: 10.1016/j.nima.2007.04.174http://doi.org/10.1016/j.nima.2007.04.174
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构