1.Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
2.School of Data Science, Tongren University, Tongren 554300, China
3.School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
4.Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Corresponding author, renyong@cqu.edu.cn
C
o
r
r
e
s
p
o
n
d
i
n
g
a
u
t
h
o
r
,
r
e
n
y
o
n
g
@
c
q
u
.
e
d
u
.
c
n
weibiao@cqu.edu.cn
w
e
i
b
i
a
o
@
c
q
u
.
e
d
u
.
c
n
纸质出版日期:2021-04-01,
网络出版日期:2021-04-19,
收稿日期:2020-12-04,
修回日期:2021-01-21,
录用日期:2021-01-22
扫 描 看 全 文
引用本文
Yin-Jin Ma, Yong Ren, Peng Feng, 等. Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography[J]. 核技术(英文版), 2021, 32(4):41
Yin-Jin Ma, Yong Ren, Peng Feng, et al. Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography[J]. Nuclear Science and Techniques, 2021, 32(4):41
Yin-Jin Ma, Yong Ren, Peng Feng, 等. Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography[J]. 核技术(英文版), 2021, 32(4):41 DOI: 10.1007/s41365-021-00874-2.
Yin-Jin Ma, Yong Ren, Peng Feng, et al. Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography[J]. Nuclear Science and Techniques, 2021, 32(4):41 DOI: 10.1007/s41365-021-00874-2.
0
浏览量
2
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构