1.School of Intelligent Engineering, Shandong Management University, Jinan 250357, China
2.Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3.Sorbonne Universite, Universite Paris Diderot, Sorbonne Paris Cite, CNRS/IN2P3, LPNHE, Paris
qianxl@sdmu.edu.cn
sunhy@sdmu.edu.cn
liuc@ihep.ac.cn
Scan for full text
Xiang-Li Qian, Hui-Ying Sun, Cheng Liu, 等. Simulation study on performance optimization of a prototype scintillation detector for the GRANDProto35 experiment[J]. Nuclear Science and Techniques, 2021,32(5):51
Xiang-Li Qian, Hui-Ying Sun, Cheng Liu, et al. Simulation study on performance optimization of a prototype scintillation detector for the GRANDProto35 experiment[J]. Nuclear Science and Techniques, 2021,32(5):51
Xiang-Li Qian, Hui-Ying Sun, Cheng Liu, 等. Simulation study on performance optimization of a prototype scintillation detector for the GRANDProto35 experiment[J]. Nuclear Science and Techniques, 2021,32(5):51 DOI: 10.1007/s41365-021-00882-2.
Xiang-Li Qian, Hui-Ying Sun, Cheng Liu, et al. Simulation study on performance optimization of a prototype scintillation detector for the GRANDProto35 experiment[J]. Nuclear Science and Techniques, 2021,32(5):51 DOI: 10.1007/s41365-021-00882-2.
As a proposed detector, the giant radio array for neutrino detection (GRAND) is primarily designed to discover and study the origin of ultra-high-energy cosmic rays, with ultra-high-energy neutrinos presenting the main method for detecting ultra-high-energy cosmic rays and their sources. The main principle is to detect radio emissions generated by ultra-high-energy neutrinos interacting with the atmosphere as they travel. GRAND is the largest neutrino detection array to be built in China. GRANDProto35, as the first stage of the GRAND experiment, is a coincidence array composed of radio antennas and a scintillation detector, the latter of which, as a traditional detector, is used to perform cross-validation with radio detection, thus verifying the radio detection efficiency and enabling study of the background exclusion method. This study focused on the implementation of the optimization simulation and experimental testing of the performance of the prototype scintillation detector used in GRANDProto35. A package based on GEANT4 was used to simulate the details of the scintillation detector, including the optical properties of its materials, the height of the light guide box, and position inhomogeneity. The surface of the scintillator and the reflective materials used in the detector were optimized, and the influence of light guide heights and position inhomogeneity on the energy and time resolutions of the detector were studied. According to the simulation study, the number of scintillator photoelectrons increased when changing from the polished surface to the ground surface, with the appropriate design height for the light guide box being 50 cm and the appropriate design area for the scintillator being 0.5 m,2,. The performance of the detector was tested in detail through a coincidence experiment, and the test results showed that the number of photoelectrons collected in the detector was ,∼,84 with a time resolution of ,∼,1 ns, indicating good performance. The simulation results were consistent with those obtained from the tests, which also verified the reliability of the simulation software. These studies provided a full understanding of the performance of the scintillation detector and guidance for the subsequent operation and analysis of the GRANDProto35 experimental array.
GRANDProto35GEANT4Scintillation detectorLight guide heightPhotoelectrons
K. Kotera, A.V. Olinto, The astrophysics of ultrahigh-energy cosmic rays. Annu. Rev. Astron. Astr. 49, 119 (2011). doi: 10.1146/annurev-astro-081710-102620http://doi.org/10.1146/annurev-astro-081710-102620
K. Greisen, End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748 (1966). doi: 10.1103/PhysRevLett.16.748http://doi.org/10.1103/PhysRevLett.16.748
G.T. Zatsepin, V.A. Kuz'min, Upper limit of the spectrum of cosmic rays. Jetp L. 4, 78 (1966).
J. Álvarez-Muñiz, R.A. Batista, J. Bolmont et al., The giant radio array for neutrino detection (GRAND): science and design. Sci. China. Phys. Chem. 63, 219501 (2020). doi: 10.1007/s11433-018-9385-7http://doi.org/10.1007/s11433-018-9385-7
O. Martineau-Huynh, The Giant Radio Array for Neutrino Detection. Paper Presented at the 36th International Cosmic Ray Conference (Madison, Wisconsin, USA, July 24 -August 1. 2019)
M. Tueros, Grand, a giant radio array for neutrino detection: objectives, design and current status. EPJ Web. Conf. 216, 01006 (2019). doi: 10.1051/epjconf/201921601006http://doi.org/10.1051/epjconf/201921601006
D. Charrier, K.D. de Vries, Q.B. Gou et al., Autonomous radio detection of air showers with the TREND50 antenna array. Astropart. Phys. 110, 15 (2019). doi: 10.1016/j.astropartphys.2019.03.002http://doi.org/10.1016/j.astropartphys.2019.03.002
Q.B. Gou, O. Martineau-Huynh, J. David et al., The GRANDproto35 experiment. Paper Presented at the 35th International Cosmic Ray Conference (Bexco, Busan, Korea 10-20-July. 2017)
D.G. Michael, P. Adamson, T. Alexopoulos et al., The magnetized steel and scintillator calorimeters of the MINOS experiment. Nucl. Instrum. Meth. A. 596, 190-228 (2008). doi: 10.1016/j.nima.2008.08.003http://doi.org/10.1016/j.nima.2008.08.003
E.T. Antoni, W. Apel, F. Badea et al., The cosmic-ray experiment KASCADE. Nucl. Instrum. Meth. A. 513, 490 (2003). doi: 10.1016/S0168-9002(03)02076-Xhttp://doi.org/10.1016/S0168-9002(03)02076-X
S.K. Gupta, Y. Aikawa, N.V. Gopalakrishnan et al., GRAPES-3—A high-density air shower array for studies on the structure in the cosmic-ray energy spectrum near the knee. Nucl. Instrum. Meth. A. 540, 311-323 (2005). doi: 10.1016/j.nima.2004.11.025http://doi.org/10.1016/j.nima.2004.11.025
A. Aab, P. Abreu, M. Aglietta et al., The pierre auger observatory upgrade-preliminary design report. arXiv:1604.03637 (2016).
L.K. Ding, X.H. Ding, C. Fan et al., Tibet air shower array: results and future plan. J. Phys. Conf. Ser. 120, 062024 (2008). doi: 10.1088/1742-6596/120/6/062024http://doi.org/10.1088/1742-6596/120/6/062024
J. Zhao, J. Liu, X.D. Sheng et al., Design and performances of electromagnetic particle detector for LHAASO-KM2A. Chinese Phys. C. 38, 036002 (2014). doi: 10.1088/1674-1137/38/3/036002http://doi.org/10.1088/1674-1137/38/3/036002
P. Aguiar, E. Casarejos, J.A. Vilan et al., Geant4-GATE simulation of a large plastic scintillator for muon radiography. IEEE T. Nucl. Sci. 62, 1233-1238 (2015). doi: 10.1109/TNS.2015.2431297http://doi.org/10.1109/TNS.2015.2431297
G.I. Britvich, S.K. Chernichenko, A.P. Chubenko et al., The large scintillation charged particles detector of the Tien-Shan complex “ATHLET”. Nucl. Instrum. Meth. A. 564, 225-234 (2006). doi: 10.1016/j.nima.2006.03.042http://doi.org/10.1016/j.nima.2006.03.042
X.L. Qian, X. Wang, H.Y. Sun et al., Simulation study on cosmic ray background at large zenith angle based on GRANDProto35 coincidence array experiment. Nucl. Sci. Tech. 32, 1-11 (2021). doi: 10.1007/s41365-020-00841-3http://doi.org/10.1007/s41365-020-00841-3
M. Kandemir, A. Cakir, Simulation and efficiency studies of optical photon transportation and detection with plastic antineutrino detector modules. Nucl. Instrum. Meth. A. 898, 30 (2018). doi: 10.1016/j.nima.2018.04.059http://doi.org/10.1016/j.nima.2018.04.059
S. Scheu, H. Kaspar, P. Robmann et al., Studies on wrapping materials and light collection geometries in plastic scintillators. Nucl. Instrum. Meth. A. 567, 345-349 (2006). doi: 10.1016/j.nima.2006.05.153http://doi.org/10.1016/j.nima.2006.05.153
M. Janecek, W.W. Moses, Simulating scintillator light collection using measured optical reflectance. IEEE T. Nucl. Sci. 57, 964 (2010). doi: 10.1109/TNS.2010.2042731http://doi.org/10.1109/TNS.2010.2042731
E. Roncali, S.R. Cherry, Simulation of light transport in scintillators based on 3D characterization of crystal surfaces. PHYS. MED. BIOL. 58, 2185 (2013) doi: 10.1088/0031-9155/58/7/2185http://doi.org/10.1088/0031-9155/58/7/2185
G.F. Knoll, T.F. Knoll, T.M. Henderson, Light collection in scintillation detector composites for neutron detection. IEEE T. Nucl. Sci. 35, 872-875 (1988). doi: 10.1109/23.12850http://doi.org/10.1109/23.12850
F.-X. Gentit, Litrani: a general-purpose Monte Carlo program simulating light propagation in isotropic or anisotropic media. Nucl. Instrum. Meth. A. 486, 35-39 (2002). doi: 10.1016/S0168-9002(02)00671-Xhttp://doi.org/10.1016/S0168-9002(02)00671-X
S. Agostinelli, J. Allison, K. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Meth. A. 506, 250 (2003). doi: 10.1016/S0168-9002(03)01368-8http://doi.org/10.1016/S0168-9002(03)01368-8
J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE T. Nucl. Sci. 53, 270 (2006). doi: 10.1109/TNS.2006.869826http://doi.org/10.1109/TNS.2006.869826
G. Santin, D. Strul, D. Lazaro et al., GATE: A Geant4-based simulation platform for PET and SPECT integrating movement and time management. IEEE T. Nucl. Sci. 50, 1516-1521 (2003). doi: 10.1109/TNS.2003.817974http://doi.org/10.1109/TNS.2003.817974
W.Z. Xu, Y.F. Liu, Z.Q. Tan et al., Geant4 simulation of plastic scintillators for a prototype μSR spectrometer. Nucl. Sci. Tech. 24, 040401 (2013). doi: 10.13538/j.1001-8042/nst.2013.04.011http://doi.org/10.13538/j.1001-8042/nst.2013.04.011
S. Riggi, R. La Rocca, E. Leonora et al., GEANT4 simulation of plastic scintillator strips with embedded optical fibers for a prototype of tomographic system. Nucl. Instrum. Meth. A. 624, 583-590 (2010). doi: 10.1016/j.nima.2010.10.012http://doi.org/10.1016/j.nima.2010.10.012
Eljen Technology, EJ-200 Plastic Scintillator, http://www.eljentechnology.com/images/products/data_sheets/EJ-200_EJ-204_EJ-208_EJ-212.pdfhttp://www.eljentechnology.com/images/products/data_sheets/EJ-200_EJ-204_EJ-208_EJ-212.pdf
Hamamatsu Photonics, 51 mm (2") Photomultiplier tube assembly R7725, http://www.hamamatsu.com/resources/pdf/etd/R7723_R7724_R7725_TPMH1315E.pdfhttp://www.hamamatsu.com/resources/pdf/etd/R7723_R7724_R7725_TPMH1315E.pdf
A. Levin, C. Moisan, A more physical approach to model the surface treatment of scintillation counters and its implementation into DETECT. IEEE Nucl. Sci. Conf. R. 2, 702 (1996). doi: 10.1109/NSSMIC.1996.591410http://doi.org/10.1109/NSSMIC.1996.591410
A. Filevich, P. Bauleo, H. Bianchi et al., Spectral-directional reflectivity of Tyvek immersed in water. Nucl. Instrum. Meth. A. 423, 108 (1999). doi: 10.1016/S0168-9002(98)01194-2http://doi.org/10.1016/S0168-9002(98)01194-2
J. Arteaga-Velázquez, C. Vazquez-Lopez, A. Zepeda, A measurement of the diffuse reflectivity of 1056 Tyvek in air and water. Nucl. Instrum. Meth. A. 553, 312 (2005). doi: 10.1016/j.nima.2005.08.030http://doi.org/10.1016/j.nima.2005.08.030
D. Clark, The intrinsic scintillation efficiency of plastic scintillators for 60Co gamma excitation. Nucl. Instrum. Methods. 117, 295 (1974). doi: 10.1016/0029-554X(74)90412-1http://doi.org/10.1016/0029-554X(74)90412-1
C. Hawkes, M. Kuhlen, B. Milliken et al., Decay time and light yield measurements for plastic scintillating fibers. Nucl. Instrum. Meth. A. 292, 329 (1990). doi: 10.1016/0168-9002(90)90388-Mhttp://doi.org/10.1016/0168-9002(90)90388-M
J. Nam, Y. Choi, D. Kim et al., A detailed Monte Carlo simulation for the Belle TOF system. Nucl. Instrum. Meth. A. 491, 54 (2002). doi: 10.1016/S0168-9002(02)01231-7http://doi.org/10.1016/S0168-9002(02)01231-7
X.L. Qian, J.F. Chang, C.F. Feng et al., Calibration of pulse transit time through a cable for EAS experiments. Chinese Phys. C. 38, 066202 (2014). doi: 10.1088/1674-1137/38/6/066202http://doi.org/10.1088/1674-1137/38/6/066202
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构