1.College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China
2.Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
Corresponding author, zhangqx_cdut@163.com
Scan for full text
Zhi-Xing Gu, Qing-Xian Zhang, Yi Gu, 等. Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor[J]. Nuclear Science and Techniques, 2021,32(5):52
Zhi-Xing Gu, Qing-Xian Zhang, Yi Gu, et al. Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor[J]. Nuclear Science and Techniques, 2021,32(5):52
Zhi-Xing Gu, Qing-Xian Zhang, Yi Gu, 等. Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor[J]. Nuclear Science and Techniques, 2021,32(5):52 DOI: 10.1007/s41365-021-00887-x.
Zhi-Xing Gu, Qing-Xian Zhang, Yi Gu, et al. Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor[J]. Nuclear Science and Techniques, 2021,32(5):52 DOI: 10.1007/s41365-021-00887-x.
To perform an integral simulation of a pool-type reactor using CFD code, a multi-physics coupled code MPC-LBE for an LBE-cooled reactor was proposed by integrating a point kinetics model and a fuel pin heat transfer model into self-developed CFD code. For code verification, a code-to-code comparison was employed to validate the CFD code. Furthermore, a typical BT transient benchmark on the LBE-cooled XADS reactor was selected for verification in terms of the integral or system performance. Based on the verification results, it was demonstrated that the MPC-LBE coupled code can perform thermal-hydraulics or safety analyses for analysis for processes involved in LBE-cooled pool-type reactors.
LBE-cooled pool-type reactorComputational fluid dynamicsMulti-physics coupling codeSafety analysis codeVerification
C. Behar, Technology roadmap update for generation IV nuclear energy systems. In OECD Nuclear Energy Agency for the Generation IV International Forum, accessed Jan. 2014, 17, 2014-03. https://www.gen-4.org/gif/jcms/c_60729/technology-roadmap-update-for-generation-iv-nuclear-energy-systems?details=truehttps://www.gen-4.org/gif/jcms/c_60729/technology-roadmap-update-for-generation-iv-nuclear-energy-systems?details=true
A. Alemberti, V. Smirnov, C.F. Smith et al. Overview of lead-cooled fast reactor activities. Progress in Nuclear Energy, 77, 300-307 (2014). doi: 10.1016/j.pnucene.2013.11.011http://doi.org/10.1016/j.pnucene.2013.11.011
H. Chen, Z. Chen, C. Chen et al., Conceptual design of a small modular natural circulation lead cooled fast reactor SNCLFR-100. Inter. J. Hydrogen Energy 41(17): 7158-7168 (2016). doi: 10.1016/j.ijhydene.2016.01.101http://doi.org/10.1016/j.ijhydene.2016.01.101
H. Chen, X. Zhang, Y. Zhao et al., Preliminary design of a medium‐power modular lead‐cooled fast reactor with the application of optimization methods. Inter. J. Hydrogen Energy, 42(11): 3643-3657 (2018). doi: 10.1002/er.4112http://doi.org/10.1002/er.4112
D. Tenchine, Some thermal hydraulic challenges in sodium cooled fast reactors. Nucl. Eng. Des. 240(5), 1195-1217 (2010). doi: 10.1016/j.nucengdes.2010.01.006http://doi.org/10.1016/j.nucengdes.2010.01.006
T.H. Fanning, A.J. Brunett, T. Sumner, The SAS4A/SASSYS-1 Safety Analysis Code System, Version 5. Argonne National Lab.(ANL), Argonne, IL (United States), 2017.
G.L. Mesina. A history of RELAP computer codes. Nucl. Sci. Eng. 182(1), v-ix (2016). doi: 10.13182/NSE16-A38253http://doi.org/10.13182/NSE16-A38253
G. Lerchl, H. Austregesilo, H. Glaeser et al. ATHLET Mod 3.0—Cycle A. Validation. Gesellschaft für Anlagen-und Reaktorsicherheit (GRS) gGmbH, Garching bei München, Germany, Report No. GRS-P-1, 2012, 3.
T. Sakamoto, M. Shibahara, T. Takata et al. Numerical study of three dimensional thermal hydraulics effect on thermal stratification phenomena in upper plenum of MONJU. In Proc. Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety. 2010.
T. Sofu, Parametric analysis of thermal stratification during the MONJU turbine trip test. In Proceedings of the 2012 International Congress on Advances in Nuclear Power Plants-ICAPP'12. 2012.
M. Shibahara, T. Takata, A. Yamaguchi, Numerical study on thermal stratification phenomena in upper plenum of LMFBR “MONJU”. Nucl. Eng. Des. 258, 226-234 (2013). doi: 10.1016/j.nucengdes.2013.02.007http://doi.org/10.1016/j.nucengdes.2013.02.007
S.K. Choi, T.H. Lee, Y.I. Kim et al. Numerical analysis of thermal stratification in the upper plenum of the monju fast reactor. Nucl. Eng. Technol. 45(2), 191-202 (2013). doi: 10.5516/NET.02.2012.050http://doi.org/10.5516/NET.02.2012.050
H. Mochizuki, H. Yao, Analysis of thermal stratification in the upper plenum of the “Monju” reactor. Nucl. Eng. Des. 270, 48-59 (2014). doi: 10.1016/j.nucengdes.2013.12.049http://doi.org/10.1016/j.nucengdes.2013.12.049
M. Wu, N. Zhang, J. Zhai et al., CFD studies on the separation performance of a new combined gas-solid separator used in TMSR-SF. Nucl. Sci. Tech. 30(9): 1-12 (2019). doi: 10.1007/s41365-019-0665-4http://doi.org/10.1007/s41365-019-0665-4
Q. Niu, N.X. Wang, Study of heat transfer by using DEM-CFD method in a randomly packed pebble-bed reactor. Nucl. Sci. Techn. 30(2), 28 (2019). doi: 10.1007/s41365-019-0556-8http://doi.org/10.1007/s41365-019-0556-8
T.H. Fanning, J.W. Thomas, Advances in coupled safety modeling using systems analysis and high-fidelity methods. Argonne National Lab.(ANL), Argonne, IL (United States), 2010.
D. Pialla, D. Tenchine, S. Li et al., Overview of the system alone and system/CFD coupled calculations of the PHENIX Natural Circulation Test within the THINS project. Nucl. Eng. Des. 290: 78-86 (2015). doi: 10.1016/j.nucengdes.2014.12.006http://doi.org/10.1016/j.nucengdes.2014.12.006
G. Bandini, M. Polidori, A. Gerschenfeld et al., Assessment of systems codes and their coupling with CFD codes in thermal-hydraulic applications to innovative reactors. Nucl. Eng. Des. 281, 22-38 (2015). doi: 10.1016/j.nucengdes.2014.11.003http://doi.org/10.1016/j.nucengdes.2014.11.003
Z. Chen, X.N. Chen, A. Rineiski et al., Coupling a CFD code with neutron kinetics and pin thermal models for nuclear reactor safety analyses. Ann. Nucl. Energy, 83, 41-49 (2015). doi: 10.1016/j.anucene.2015.03.023http://doi.org/10.1016/j.anucene.2015.03.023
Z. Gu, F. Li, L. Ge et al., Verification of a HC-PK-CFD coupled program based a benchmark on beam trip transients for XADS reactor. Ann. Nucl. Energy, 133, 491-500 (2019). doi: 10.1016/j.anucene.2019.05.053http://doi.org/10.1016/j.anucene.2019.05.053
Y. Tobita, S. Kondo, H. Yamano et al., The development of SIMMER-III, an advanced computer program for LMFR safety analysis, and its application to sodium experiments. Nuclear Technology, 153(3), 245-255 (2006). doi: 10.13182/NT06-2http://doi.org/10.13182/NT06-2
S. Kondo, Y. Tobita, K. Morita et al., SIMMER-III: An advanced computer program for LMFBR severe accident analysis. In ANP'92 international conference on design and safety of advanced nuclear power plants, 1992.
H. Yamano, S. Fujita, Y. Tobita, SIMMER-III: A computer program for LMFR core disruptive accident analysis. Version 3. A model summary and program description. Japan Nuclear Cycle Development Inst., 2003.
A. D’Angelo, B. Arien, V. Sobolev, et al. Benchmark on beam interruptions in an accelerator-driven system. Nuclear Science. NEA/NSC/DOC, 2003, 17.
Y. Xiao, Z. Gu, Q. Zhang et al., New semi-analytical algorithm for solving PKEs based on Euler-Maclaurin approximation. Ann. Nucl. Energy, 141, 107308 (2020). doi: 10.1016/j.anucene.2020.107308http://doi.org/10.1016/j.anucene.2020.107308
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构