1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
3.University of the Chinese Academy of Sciences, Beijing 100080, China
Corresponding author, mayugang@fudan.edu.cn
Scan for full text
Chen-Zhong Shi, Yu-Gang Ma.
Chen-Zhong Shi, Yu-Gang Ma.
Chen-Zhong Shi, Yu-Gang Ma.
Chen-Zhong Shi, Yu-Gang Ma.
In this study, we reconstruct the ,γ,-photon energy spectrum, which is in good agreement with the experimental data of ,86,Kr + ,12,C at ,E/A, = 44 MeV within the framework of the modified EQMD model. The directed and elliptic flows of free protons and direct photons were investigated by considering the ,α,-clustering structure of ,12,C. Compared with free protons, direct photon flows provide clearer information about the early stage of a nuclear reaction. The difference in the collective flows between different configurations of ,12,C is observed in this study. This indicates that the collective flows of direct photons are sensitive to the initial configuration. Therefore, the ,γ, bremsstrahlung process might be taken as an alternative probe to investigate the ,α,-clustering structure in a light nucleus from heavy ion collisions within the Fermi-energy region.
Nuclear reactionDirect photonCollective flowα-clustering configuration
G. Gamow, Mass defect curve and nuclear constitution. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 126, 632-644 (1930). doi: 10.1098/rspa.1930.0032http://doi.org/10.1098/rspa.1930.0032
H.A. Bethe, R.F. Bacher, Nuclear physics a. stationary states of nuclei. Rev. Mod. Phys. 8, 82-229 (1936). doi: 10.1103/RevModPhys.8.82http://doi.org/10.1103/RevModPhys.8.82
H.A. Bethe, Nuclear physics b. nuclear dynamics, theoretical. Rev. Mod. Phys. 9, 69-244 (1937). doi: 10.1103/RevModPhys.9.69http://doi.org/10.1103/RevModPhys.9.69
L.R. Hafstad, E. Teller, The alpha-particle model of the nucleus. Phys. Rev. 54, 681-692 (1938). doi: 10.1103/PhysRev.54.681http://doi.org/10.1103/PhysRev.54.681
F. Hoyle, On Nuclear Reactions Occuring in Very Hot STARS.I. the Synthesis of Elements from Carbon to Nickel. Astrophys. J. Suppl. Ser. 1, 121 (1954). doi: 10.1086/190005http://doi.org/10.1086/190005
S. Jin, L.F. Roberts, S.M. Austin, et al., Enhanced triple- reaction reduces proton-rich nucleosynthesis in supernovae. Nature 588, 57 (2020). doi: 10.1038/s41586-020-2948-7http://doi.org/10.1038/s41586-020-2948-7
H.L. Liu, D.D. Han, P. Ji, et al., Reaction rate weighted multilayer nuclear reaction network. Chin. Phys. Lett. 37, 112601 (2020). doi: 10.1088/0256-307X/37/11/112601http://doi.org/10.1088/0256-307X/37/11/112601
H.L. Liu, D.D. Han, Y.G. Ma, et al., Network structure of thermonuclear reactions in nuclear landscape. Sci. China-Physics, Mechanics & Astronomy 63, 112062 (2020). doi:10.1007/s11433-020-1552-2http://doi.org/10.1007/s11433-020-1552-2
A. Ono, Antisymmetrized molecular dynamics for heavy ion collisions. Progress in Particle and Nuclear Physics 53, 501-581 (2004). doi: 10.1016/j.ppnp.2004.05.002http://doi.org/10.1016/j.ppnp.2004.05.002
H. Feldmeier, J. Schnack, Molecular dynamics for fermions. Reviews of Modern Physics 72, 655-688 (2000). doi: 10.1103/RevModPhys.72.655http://doi.org/10.1103/RevModPhys.72.655
T. Maruyama, K. Niita, A. Iwamoto, Extension of quantum molecular dynamics and its application to heavy-ion collisions. Phys. Rev. C 53, 297-304 (1996). doi: 10.1103/PhysRevC.53.297http://doi.org/10.1103/PhysRevC.53.297
W.B. He, Y.G. Ma, X.G. Cao, et al., Giant dipole resonance as a fingerprint of clustering configurations in and . Phys. Rev. Lett. 113, 032506 (2014). doi: 10.1103/PhysRevLett.113.032506http://doi.org/10.1103/PhysRevLett.113.032506
W.B. He, Y.G. Ma, X.G. Cao, et al., Dipole oscillation modes in light alpha-clustering nuclei. Phys. Rev. C 94, 014301 (2016). doi: 10.1103/PhysRevC.94.014301http://doi.org/10.1103/PhysRevC.94.014301
B.S. Huang, Y.G. Ma, W.B. He, Photonuclear reaction as a probe for -clustering nuclei in the quasi-deuteron region. Phys. Rev. C 95, 034606 (2017). doi: 10.1103/PhysRevC.95.034606http://doi.org/10.1103/PhysRevC.95.034606
J. He, S. Zhang, Y.G. Ma, et al., Clustering structure effect on Hanbury-BrowncTwiss correlation in 12C+197 Au 12C+197Au collisions at 200 GeV. The European Physical Journal A 56, 52 (2020). doi: 10.1140/epja/s10050-019-00002-0http://doi.org/10.1140/epja/s10050-019-00002-0
B.S. Huang, Y.G. Ma, Two-proton momentum correlation from photodisintegration of -clustering light nuclei in the quasideuteron region. Phys. Rev. C 101, 034615 (2020). doi: 10.1103/PhysRevC.101.034615http://doi.org/10.1103/PhysRevC.101.034615
B.S. Huang, Y.G. Ma, Emission time sequence of neutrons and protons as probes of -clustering structure. Chin. Phys. C 44, 094105 (2020). doi: 10.1088/1674-1137/44/9/094105http://doi.org/10.1088/1674-1137/44/9/094105
W. Broniowski, E.R. Arriola, Signatures of alpha clustering in light nuclei from relativistic nuclear collisions. Phys. Rev. Lett. 112, 112501 (2020). doi: 10.1103/PhysRevLett.112.112501http://doi.org/10.1103/PhysRevLett.112.112501
S. Zhang, Y.G. Ma, J.H. Chen, et al., Nuclear cluster structure effect on elliptic and triangular flows in heavy-ion collisions. Phys. Rev. C 95, 064904 (2017). doi: 10.1103/PhysRevC.95.064904http://doi.org/10.1103/PhysRevC.95.064904
S. Zhang, Y.G. Ma, J.H. Chen, et al., Collective flows of -clustering 12c + 197au by using different flow analysis methods. The European Physical Journal A 54, 161 (2018). doi: 10.1140/epja/i2018-12597-yhttp://doi.org/10.1140/epja/i2018-12597-y
S.H. Lim, J. Carlson, C. Loizides, et al., Exploring new small system geometries in heavy ion collisions. Phys. Rev. C 99, 04490 (2019). doi: 10.1103/PhysRevC.99.044904http://doi.org/10.1103/PhysRevC.99.044904
C.C. Guo, Y.G. Ma, Z.D. An, et al., Influence of -clustering configurations in collisions at fermi energy. Phys. Rev. C 99, 044607 (2019). doi: 10.1103/PhysRevC.99.044607http://doi.org/10.1103/PhysRevC.99.044607
C.C. Guo, W.B. He, Y.G. Ma, Collective flows of collisions with -clustering configurations. Chinese Physics Letters 34, 092101 (2017). doi: 10.1088/0256-307x/34/9/092101http://doi.org/10.1088/0256-307x/34/9/092101
Y.A. Li, S. Zhang, Y.G. Ma, Signatures of -clustering in by using a multiphase transport model. Phys. Rev. C 102, 054907 (2020). doi: 10.1103/PhysRevC.102.054907http://doi.org/10.1103/PhysRevC.102.054907
W. Reisdorf, H.G. Ritter, Collective flow in heavy-ion collisions. Annual Review of Nuclear and Particle Science 47, 663-709 (1997). doi: 10.1146/annurev.nucl.47.1.663http://doi.org/10.1146/annurev.nucl.47.1.663
N. Herrmann, J.P. Wessels, T. Wienold, Collective flow in heavy-ion collisions. Annual Review of Nuclear and Particle Science 49, 581-632 (1999). doi: 10.1146/annurev.nucl.49.1.581http://doi.org/10.1146/annurev.nucl.49.1.581
A.E. Glassgold, W. Heckrotte, K.M. Watson, Collective excitations of nuclear matter. Annals of Physics 6, 1-36 (1959). doi: 10.1016/0003-4916(59)90037-5http://doi.org/10.1016/0003-4916(59)90037-5
W. Scheid, H. Müller, W. Greiner, Nuclear shock waves in heavy-ion collisions. Phys. Rev. Lett. 32, 741-745 (1974). doi: 10.1103/PhysRevLett.32.741http://doi.org/10.1103/PhysRevLett.32.741
H.A. Gustafsson, H.H. Gutbrod, B. Kolb, et al., Collective flow observed in relativistic nuclear collisions. Phys. Rev. Lett. 52, 1590-1593 (1984). doi: 10.1103/PhysRevLett.52.1590http://doi.org/10.1103/PhysRevLett.52.1590
R.E. Renfordt, D. Schall, R. Bock, et al., Stopping power and collective flow of nuclear matter in the reaction ar+pb at 0.8 gev/u. Phys. Rev. Lett. 53, 763-766 (1984). doi: 10.1103/PhysRevLett.53.763http://doi.org/10.1103/PhysRevLett.53.763
C.A. Ogilvie, W. Bauer, D.A. Cebra, et al., Disappearance of flow and its relevance to nuclear matter physics. Physical Review C 42, R10-R14 (1990). doi: 10.1103/PhysRevC.42.R10http://doi.org/10.1103/PhysRevC.42.R10
C.L. Zhou, Y.G. Ma, D.Q. Fang, et al., Correlation between elliptic flow and shear viscosity in intermediate-energy heavy-ion collisions. Phys. Rev. C 90, 057601 (2014). doi: 10.1103/PhysRevC.90.057601http://doi.org/10.1103/PhysRevC.90.057601
G.D. Westfall, W. Bauer, D. Craig, et al., Mass dependence of the disappearance of flow in nuclear collisions. Phys. Rev. Lett. 71, 1986-1989 (1993). doi: 10.1103/PhysRevLett.71.1986http://doi.org/10.1103/PhysRevLett.71.1986
B.A. Li, A.T. Sustich, Differential Flow in Heavy-Ion Collisions at Balance Energies. Phys. Rev. Lett. 82, 5004-5007 (1999). doi: 10.1103/PhysRevLett.82.5004http://doi.org/10.1103/PhysRevLett.82.5004
U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci 63, 123 (2013). doi: 10.1146/annurev-nucl-102212-170540http://doi.org/10.1146/annurev-nucl-102212-170540
C. Shen, L. Yan, Recent development of hydrodynamic modeling in heavy-ion collisions. Nucl. Sci. Tech. 31, 122 (2020). doi: 10.1007/s41365-020-00829-zhttp://doi.org/10.1007/s41365-020-00829-z
M. Waqas, F.H. Liu, L.L. Li, et al., Effective (kinetic freeze-out) temperature, transverse flow velocity, and kinetic freeze-out volume in high energy collisions. Nucl. Sci. Tech. 31, 109 (2020). doi: 10.1007/s41365-020-00821-7http://doi.org/10.1007/s41365-020-00821-7
G.H. Liu, T.Z. Yan, Y.G. Ma, et al., Anisotropic flows of nuclear clusters and hard photons in intermediate energy heavy ion collisions. International J. Mod. Phys. E 17, 1850-1864 (2008). doi: 10.1142/S0218301308010830http://doi.org/10.1142/S0218301308010830
G. Liu, Y.G. Ma, X. Cai, et al., Azimuthal asymmetry of direct photons in intermediate energy heavy-ion collisions. Phys. Lett. B 663, 312-316 (2008). doi: 10.1016/j.physletb.2008.04.037http://doi.org/10.1016/j.physletb.2008.04.037
Y.G. Ma, G.H. Liu, X.Z. Cai, et al., Hard-photon flow and photon-photon correlation in intermediate-energy heavy-ion collisions. Phys. Rev. C 85, 024618 (2012).
S.S. Wang, Y.G. Ma, X.G. Cao, et al., Hard-photon production and its correlation with intermediate-mass fragments in a framework of a quantum molecular dynamics model. Phys. Rev. C 102, 024620 (2020). doi: 10.1103/PhysRevC.102.024620http://doi.org/10.1103/PhysRevC.102.024620
R. Bertholet, M.K. Njock, M. Maurel, et al., High energy gamma-ray production from 44 mev/a 86kr bombardment on nuclei. Nucl. Phys. A 474, 541-556 (1987). doi: 10.1016/0375-9474(87)90630-0http://doi.org/10.1016/0375-9474(87)90630-0
H. Feldmeier, J. Schnack, Molecular dynamics for fermions. Rev. Mod. Phys. 72, 655-688 (2000).
C.Z. Shi, Y.G. Ma, X.G. Cao, et al., Direct photon emission and influence of dynamical wave packets in an extended quantum molecular dynamics model. Physical Review C 102, 014601 (2020). doi: 10.1103/PhysRevC.102.014601http://doi.org/10.1103/PhysRevC.102.014601
A. Ono, H. Horiuchi, T. Maruyama, et al., Antisymmetrized version of molecular dynamics with two nucleon collisions and its application to heavy ion reactions. Prog. Theor. Phys. 87, 1185-1206 (1992). doi: 10.1143/PTP.87.1185http://doi.org/10.1143/PTP.87.1185
W. Bauer, G.F. Bertsch, W. Cassing, et al., Energetic photons from intermediate energy proton- and heavy-ion-induced reactions. Phys. Rev. C 34, 2127-2133 (1986). doi: 10.1103/PhysRevC.34.2127http://doi.org/10.1103/PhysRevC.34.2127
A.M. Poskanzer, S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 58, 1671-1678 (1998). doi: 10.1103/PhysRevC.58.1671http://doi.org/10.1103/PhysRevC.58.1671
Y.G. Ma, W.Q. Shen, J. Feng, et al., Rotational behavior in intermediate-energy heavy-ion collisions. Phys. Rev. C 48, R1492-R1496 (1993). doi: 10.1103/PhysRevC.48.R1492http://doi.org/10.1103/PhysRevC.48.R1492
Y.G. Ma, W.Q. Shen, Correlation-functions and the disappearance of rotational collective motion in nucleus-nucleus collisions below 100 mev/nucleon. Phys. Rev. C 51, 3256-3263 (1995). doi: 10.1103/PhysRevC.48.R1492http://doi.org/10.1103/PhysRevC.48.R1492
T. Furuta, K.H.O. Hasnaoui, F. Gulminelli, et al., Monopole oscillations in light nuclei with a molecular dynamics approach. Physical Review C 82,. doi: 10.1103/PhysRevC.82.034307http://doi.org/10.1103/PhysRevC.82.034307
G.Q. Zhang, Y.G. Ma, X.G. Cao, et al., Unified description of nuclear stopping in central heavy-ion collisions from 10 A MeV to 1.2 A GeV. Physical Review C 84, 034612 (2011). doi: 10.1103/PhysRevC.84.034612http://doi.org/10.1103/PhysRevC.84.034612
H. Nifenecker, J. Bondorf, Nuclear electromagnetic bremsstrahlung: A new tool for studying heavy-ion reactions. Nucl. Phys. A 442, 478-508 (1985). doi: 10.1016/S0375-9474(85)80028-2http://doi.org/10.1016/S0375-9474(85)80028-2
N. Gan, K.T. Brinkmann, A.L. Caraley, et al., Neutron-proton bremsstrahlung from low-energy heavy-ion reactions. Phys. Rev. C 49, 298-303 (1994). doi: 10.1103/PhysRevC.49.298http://doi.org/10.1103/PhysRevC.49.298
S.S. Wang, Y.G. Ma, X.G. Cao, et al., Azimuthal anisotropy and multiplicities of hard photons and free nucleons in intermediate-energy heavy-ion collisions. Eur. Phys. J. A 56, 254 (1993). doi: 10.1140/epja/s10050-020-00264-zhttp://doi.org/10.1140/epja/s10050-020-00264-z
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构