1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, China
3.School of Nuclear Sciences and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
4.Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
5.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
cbfu@fudan.edu.cn
mayugang@fudan.edu.cn
Scan for full text
Po Hu, Zhi-Guo Ma, Kai Zhao, 等. Development of gated fiber detectors for laser-induced strong electromagnetic pulse environments[J]. 核技术(英文版), 2021,32(6):58
Po Hu, Zhi-Guo Ma, Kai Zhao, et al. Development of gated fiber detectors for laser-induced strong electromagnetic pulse environments[J]. Nuclear Science and Techniques, 2021,32(6):58
Po Hu, Zhi-Guo Ma, Kai Zhao, 等. Development of gated fiber detectors for laser-induced strong electromagnetic pulse environments[J]. 核技术(英文版), 2021,32(6):58 DOI: 10.1007/s41365-021-00898-8.
Po Hu, Zhi-Guo Ma, Kai Zhao, et al. Development of gated fiber detectors for laser-induced strong electromagnetic pulse environments[J]. Nuclear Science and Techniques, 2021,32(6):58 DOI: 10.1007/s41365-021-00898-8.
With the development of laser technologies, nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines. However, studies on nuclear reactions in plasma are still limited by detecting technologies. This is mainly due to the fact that extremely high electromagnetic pulses (EMPs) can also be induced when high-intensity lasers hit targets to induce plasma, and then cause dysfunction of many types of traditional detectors. Therefore, new particle detecting technologies are highly needed. In this paper, we report a recently developed gated fiber detector which can be used in harsh EMP environments. In this prototype detector, scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well. With those measures, the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds. This new type of detector can be widely used as a time-of-flight (TOF) detector in high-intensity laser nuclear physics experiments for detecting neutrons, photons, and other charged particles.
Gated Fiber DetectorRadiation DetectionHigh-Intensity LaserStrong Electromagnetic pulses
T. Ditmire, J. W. G. Tisch, E. Springate et al., High-energy ions produced in explosions of superheated atomic clusters. Nature, 386, 54-56 (1997). doi: 10.1038/386054a0http://doi.org/10.1038/386054a0
T. Tajima and J. M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979). doi: 10.1103/PhysRevLett.43.267http://doi.org/10.1103/PhysRevLett.43.267
C.B. Fu, J. Bao, L.M. Chen et al., Laser-driven plasma collider for nuclear studies. Sci. Bull. 60, 1211-1213 (2015). doi: 10.1007/s11434-015-0821-0http://doi.org/10.1007/s11434-015-0821-0
D. Klir, J. Krasa, J. Cikhardt et al., Efficient neutron production from sub-nanosecond laser pulse accelerating deuterons on target front side. Phys. Plasmas 22, 093117 (2015). doi: 10.1063/1.4931460http://doi.org/10.1063/1.4931460
D. L. Balabanski, R. Popescu, D. Stutman et al., New light in nuclear physics: The extreme light infrastructure. Eu_rophys. Lett. 117, 28001 (2017). doi: 10.1209/0295-5075/117/28001http://doi.org/10.1209/0295-5075/117/28001
X. Zhang, J. Zhao, D. Yuan et al., Deuteron-deuteron fusion in laser-driven counter-streaming collisionless plasmas. Phys. Rev. C 96, 055801 (2017). doi: 10.1103/PhysRevC.96.055801http://doi.org/10.1103/PhysRevC.96.055801
Y.-X. Geng, Q. Liao, Y.-R. Shou et al., Generating proton beams exceeding 10 MeV using high contrast 60 TW laser. Chin. Phys. Lett. 35, 092901 (2018). doi: 10.1088/0256-307x/35/9/092901http://doi.org/10.1088/0256-307x/35/9/092901
Z. G. Ma, H. Y. Lan, W. Y. Liu et al., Photonuclear production of medical isotopes 62,64Cu using intense laser-plasma electron source. Matter Radiat. Extremes 4, 064401 (2019). doi: 10.1063/1.5100925http://doi.org/10.1063/1.5100925
W. Luo, W. Y. Liu, T. Yuan et al., QED cascade saturation in extreme high fields. Scientific Reports 8, 8400 (2018). doi: 10.1038/s41598-018-26785-8http://doi.org/10.1038/s41598-018-26785-8
X. L. Wang, Z. Y. Xu, W. Luo et al., Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator. Physics of Plasmas 24, 093105 (2017). doi: 10.1063/1.4998470http://doi.org/10.1063/1.4998470
J. Nuckolls, L. Wood, A. Thiessen et al., Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature 239, 139-142 (1972). doi: 10.1038/239139a0http://doi.org/10.1038/239139a0
J. Zweiback, R. A. Smith, T. E. Cowan et al., Nuclear fusion driven by coulomb explosions of large deuterium clusters. Phys. Rev. Lett. 84, 2634 (2000). doi: 10.1103/PhysRevLett.84.2634http://doi.org/10.1103/PhysRevLett.84.2634
L. Torrisi, S. Cavallaro, M. Cutroneo et al., Deuterium–deuterium nuclear reaction induced by high intensity laser pulses. Appl. Sur_f. Sci. 272, 42-45 (2013). doi: 10.1016/j.apsusc.2012.02.077http://doi.org/10.1016/j.apsusc.2012.02.077
V. Y. Bychenkov, V. T. Tikhonchuk, and S. V. Tolokon_nikov, Nuclear reactions triggered by laser-accelerated high-energy ions. J. Exper. Theor. Phys. 88, 1137-1142 (1999). doi: 10.1134/1.558902http://doi.org/10.1134/1.558902
S. Tavernier, Experimental Techniques in Nuclear and Particle Physics (Springer Science & Business Media, New York, 2010)
Y.-F. He, X.-F. Xi, S.-L. Guo et al., Calibration of CR-39 solid-state track detectors for study of laser-driven nuclear reactions. Nucl. Sci. Tech. 31, 42 (2020). doi: 10.1007/s41365-020-0749-1http://doi.org/10.1007/s41365-020-0749-1
M.-H. Wang, J.-L. Qu, and M. Zhu, Partially overlapped dual laser beams to reduce ablation craters. Chin. Phys. Lett. 37, 015202 (2020). doi: 10.1088/0256-307X/37/1/015202http://doi.org/10.1088/0256-307X/37/1/015202
S.-K. He, J.-L. Jiao, Z.-G. Deng et al., Generation of ultrahigh-velocity collisionless electrostatic shocks using an ultra-intense laser pulse interacting with foil-gas target. Chin. Phys. Lett. 36, 105201 (2019). doi: 10.1088/0256-307x/36/10/105201http://doi.org/10.1088/0256-307x/36/10/105201
F. Consoli, V. T. Tikhonchuk, M. Bardon et al., Laser produced electromagnetic pulses: generation, detection and mitigation. High Power Laser Science and Engineering 8, e22 (2020). doi: 10.1017/hpl.2020.13http://doi.org/10.1017/hpl.2020.13
T. W. Jeong, P. K. Singh, C. Scullion et al., CR-39 track detector for multi-MeV ion spectroscopy. Sci. Rep. 7, 2152 (2017). doi: 10.1038/s41598-017-02331-whttp://doi.org/10.1038/s41598-017-02331-w
Y. Zhang, H.-W. Wang, Y.-G. Ma et al., Energy calibration of a CR-39 nuclear-track detector irradiated by charged particles. Nucl. Sci. Tech. 30, 87 (2019). doi: 10.1007/s41365-019-0619-xhttp://doi.org/10.1007/s41365-019-0619-x
Y. Zhang, L.-X. Liu, H.-W. Wang et al., Primary yields of protons measured using CR-39 in laser-induced deuteron–deuteron fusion reactions. Nucl. Sci. Tech. 31, 62(2020). doi: 10.1007/s41365-020-00769-8http://doi.org/10.1007/s41365-020-00769-8
E. Awad, M. Rana, and M. Al-Jubbori, Bulk etch rates of CR-39 at high etchant concentrations: diffusion-limited etching. Nucl. Sci. Tech. 31, 118 (2020). doi: 10.1007/s41365-020-00830-6http://doi.org/10.1007/s41365-020-00830-6
L. Zhao, Z.-J. Chen, H.-B. Sang et al., Spatial characteristics of thomson scattering spectra in laser and magnetic fields. Chin. Phys. Lett. 36, 074101 (2019). doi: 10.1088/0256-307X/36/7/074101http://doi.org/10.1088/0256-307X/36/7/074101
G. Di Giorgio, F. Consoli, R. De Angelis et al., Development of advanced Thomson spectrometers for nuclear fusion experiments initiated by laser. J. Instrum. 15, C10013 (2020). doi: 10.1088/1748-0221/15/10/C10013http://doi.org/10.1088/1748-0221/15/10/C10013
C. Fu, Q. Tang, D. Fang et al., Proton energy detectors for environments of high intensity electromagnetic pulses. Patent application in process under No. CN112099072A, 2020
T. Tajima and G. Mourou, Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. ST Accel. Beams 5, 031301 (2002). doi: 10.1103/PhysRevSTAB.5.031301http://doi.org/10.1103/PhysRevSTAB.5.031301
M. Janecek and W. Moses, Optical reflectance measurements for commonly used reflectors. IEEE T. Nucl. Sci. 55, 2432-2437 (2008). doi: 10.1109/TNS.2008.2001408http://doi.org/10.1109/TNS.2008.2001408
M. Janecek, Reflectivity spectra for commonly used reflectors. IEEE T. Nucl. Sci. 59, 490-497 (2012). doi: 10.1109/TNS.2012.2183385http://doi.org/10.1109/TNS.2012.2183385
M.N. Ullah, E. Pratiwi, J.H. Park et al., Studies on sub-millimeter LYSO:Ce, Ce:GAGG, and a new Ce:GFAG block detector for PET using digital silicon photomultiplier. Nucl. Instru. Methods A 911, 115-122 (2018). doi: 10.1016/j.nima.2018.09.029http://doi.org/10.1016/j.nima.2018.09.029
J. B. Schutt, J.F. Arens, C.M. Shai et al., Highly reflecting stable white paint for the detection of ultraviolet and visible radiations. Appl. Opt. 13, 2218 (1974). doi: 10.1364/AO.13.002218http://doi.org/10.1364/AO.13.002218
F. Grum and G. W. Luckey, Optical sphere paint and a working standard of reflectance. Appl. Opt. 7, 2289 (1968). doi: 10.1364/AO.7.002289http://doi.org/10.1364/AO.7.002289
J. Elsey, D.R. McKenzie, J. Lambert et al., Optimal coupling of light from a cylindrical scintillator into an optical fiber. Appl. Opt. 46, 397 (2007). doi: 10.1364/AO.46.000397http://doi.org/10.1364/AO.46.000397
0
浏览量
4
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构