1.Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China
2.Department of Radiology, General Hospital of the Northern Theater of the Chinese People’s Liberation Army, Shenyang 110016, China.
3.Department of Radiotherapy, General Hospital of the Northern Theater of the Chinese People’s Liberation Army, Shenyang 110016, China.
4.Centre de Recherche en Information Biomedicale Sino-Francais (LIA CRIBs), Rennes 35000, France
Yang Chen, chenyang.list@seu.edu.cn
Scan for full text
Jia-Shun Liu, Yi-Kun Zhang, Hui Tang, 等. Rollback reconstruction for TDC enhanced perfusion imaging[J]. Nuclear Science and Techniques, 2021,32(8):80
Jia-Shun Liu, Yi-Kun Zhang, Hui Tang, et al. Rollback reconstruction for TDC enhanced perfusion imaging[J]. Nuclear Science and Techniques, 2021,32(8):80
Jia-Shun Liu, Yi-Kun Zhang, Hui Tang, 等. Rollback reconstruction for TDC enhanced perfusion imaging[J]. Nuclear Science and Techniques, 2021,32(8):80 DOI: 10.1007/s41365-021-00918-7.
Jia-Shun Liu, Yi-Kun Zhang, Hui Tang, et al. Rollback reconstruction for TDC enhanced perfusion imaging[J]. Nuclear Science and Techniques, 2021,32(8):80 DOI: 10.1007/s41365-021-00918-7.
Tomographic perfusion imaging is a significant imaging modality for stroke diagnosis. However, the low rotational speed of the C-arm (6 to 8 s per circle) is a challenge for applying perfusion imaging in C-arm cone beam computed tomography (CBCT). Traditional reconstruction methods cannot remove the artifacts caused by the slow rotational speed or acquire enough sample points to restore the time density curve (TDC). This paper presents a dynamic rollback reconstruction method for CBCT. The proposed method can improve the temporal resolution by increasing the sample points used for calculating the TDC. Combined with existing techniques, the algorithm allows slow-rotating scanners to be used for perfusion imaging purposes. In the experiments, the proposed method was compared with other dynamic reconstruction algorithms based on standard reconstruction and the temporal interpolation approach. The presented algorithm could improve the temporal resolution without increasing the X-ray exposure time or contrast agent.
Rollback reconstructionCBCTTime resolutionTime density curve
S. Cho, E. Pearson, C.A. Pelizzari et al., Region of interest image reconstruction with intensity weighting in circular cone-beam CT for image-guided radiation therapy. Med. Phys. 36(4): 1184-1192 (2009). doi: 10.1118/1.3085825http://doi.org/10.1118/1.3085825
B.C.V. Campbell, S. Christensen, C.R. Levi et al., Cerebral blood flow is the optimal CT perfusion parameter for assessing infarct core. Stroke, 42(12): 3435-3440 (2011). doi: 10.1161/STROKEAHA.111.618355http://doi.org/10.1161/STROKEAHA.111.618355
J.D. Eastwood, M.H. Lev, M. Wintermark et al., Correlation of early dynamic CT perfusion imaging with whole-brain MR diffusion and perfusion imaging in acute hemispheric stroke. Am. J. Neuroradiol. 24(9): 1869-1875 (2003).
H. Tenjin, F. Asakura, Y. Nakahara et al., Evaluation of intraaneurysmal blood velocity by time-density curve analysis and digital subtraction angiography. Am. J. Neuroradiol. 19(7): 1303-1307 (1998).
K.A. Miles, Measurement of tissue perfusion by dynamic computed tomography. Br. J. Radiol. 64(761), 409-412 (1991). doi: 10.1259/0007-1285-64-761-409http://doi.org/10.1259/0007-1285-64-761-409
B.D. Murphy, A.J. Fox, D.H. Lee et al., Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion–derived blood flow and blood volume measurements. Stroke, 37(7): 1771-1777 (2006). doi: 10.1161/01.STR.0000227243.96808.53http://doi.org/10.1161/01.STR.0000227243.96808.53
K.A. Miles, M.R. Griffiths, Perfusion CT: a worthwhile enhancement? Br. J. Radiol. 76(904), 220-231 (2003). doi: 10.1259/bjr/13564625http://doi.org/10.1259/bjr/13564625
T.E. Mayer, G.F. Hamann, J. Baranczyk et al., Dynamic CT perfusion imaging of acute stroke. Am. J. Neuroradiol. 21(8), 1441-1449 (2000).
E. Klotz, M. König, Perfusion measurements of the brain: using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke. European J. Radiol. 30(3), 170-184 (1999). doi: 10.1016/S0720-048X(99)00009-1http://doi.org/10.1016/S0720-048X(99)00009-1
A. Fieselmann, A. Ganguly, Y. Deuerling-Zheng et al., Interventional 4-D C-arm CT perfusion imaging using interleaved scanning and partial reconstruction interpolation. IEEE T. Med. Imaging 31(4), 892-906 (2011). doi: 10.1109/TMI.2011.2181531http://doi.org/10.1109/TMI.2011.2181531
A. Ganguly, A. Fieselmann, M. Marks et al., Cerebral CT perfusion using an interventional C-arm imaging system: cerebral blood flow measurements. Am. J. Neuroradiol. 32(8): 1525-1531 (2011). doi: 10.3174/ajnr.A2518http://doi.org/10.3174/ajnr.A2518
P. Montes, Dynamic cone-beam reconstruction for perfusion computed tomography. American Association for Cancer Research (AACR), 2006. doi: 10.11588/heidok.00007020http://doi.org/10.11588/heidok.00007020
P. Grangeat, A. Koenig, T. Rodet et al., Theoretical framework for a dynamic cone-beam reconstruction algorithm based on a dynamic particle model. Phys. Med. Biol. 47(15): 2611 (2002).
H. Turbell, Cone-beam reconstruction using filtered backprojection. Linköping University Electronic Press, 2001.
H.K. Tuy, An inversion formula for cone-beam reconstruction. SIAM J. Appl. Math. 43(3): 546-552 (1983). doi: 10.1137/0143035http://doi.org/10.1137/0143035
M. Grass, T. Köhler, R. Proksa, 3D cone-beam CT reconstruction for circular trajectories. Phys. Med. Biol. 45(2): 329 (2000).
A. Fieselmann, A. Ganguly, Y. Deuerling-Zheng et al., A dynamic reconstruction approach for cerebral blood flow quantification with an interventional C-arm CT. 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 53-56 (2010). doi: 10.1109/ISBI.2010.5490417http://doi.org/10.1109/ISBI.2010.5490417.
J. Tang, M. Xu, K. Niu et al., A novel temporal recovery technique to enable cone beam CT perfusion imaging using an interventional C-arm system. Proceedings Volume 8668, Medical Imaging 2013: Physics of Medical Imaging, SPIE Medical Imaging, 2013, Lake Buena Vista (Orlando Area), Florida, United States 86681A (2013). doi: 10.1117/12.2007620http://doi.org/10.1117/12.2007620
Y. Li, J.W. Garrett, K. Li et al., An enhanced SMART-RECON algorithm for time-resolved C-arm Cone-Beam CT Imaging. IEEE T. Med. Imaging 39(6): 1894-1905 (2020). doi: 10.1109/TMI.2019.2960720http://doi.org/10.1109/TMI.2019.2960720
H. Zhu, D. Tong, L. Zhang et al., Temporally downsampled cerebral CT perfusion image restoration using deep residual learning. Int. J. Comput. Assist. Radiol. Surgery 15(2): 193-201 (2020). doi: 10.1007/s11548-019-02082-1http://doi.org/10.1007/s11548-019-02082-1
P. Montes, G. Lauritsch, A temporal interpolation approach for dynamic reconstruction in perfusion CT. Med. Phys. 34(7): 3077-3092 (2007). doi: 10.1118/1.2746486http://doi.org/10.1118/1.2746486
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构