1.School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
2.Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Qi-Te Li, liqt@pku.edu.cn
Scan for full text
Li-Sheng Yang, Jin-Yan Xu, Qi-Te Li, 等. Performance of the CAT-TPC based on two-dimensional readout strips[J]. Nuclear Science and Techniques, 2021,32(8):85
Li-Sheng Yang, Jin-Yan Xu, Qi-Te Li, et al. Performance of the CAT-TPC based on two-dimensional readout strips[J]. Nuclear Science and Techniques, 2021,32(8):85
Li-Sheng Yang, Jin-Yan Xu, Qi-Te Li, 等. Performance of the CAT-TPC based on two-dimensional readout strips[J]. Nuclear Science and Techniques, 2021,32(8):85 DOI: 10.1007/s41365-021-00919-6.
Li-Sheng Yang, Jin-Yan Xu, Qi-Te Li, et al. Performance of the CAT-TPC based on two-dimensional readout strips[J]. Nuclear Science and Techniques, 2021,32(8):85 DOI: 10.1007/s41365-021-00919-6.
A gas detector 140×140×140 mm,3, in size, termed the compact active target time projection chamber (CAT-TPC), was developed in this study to measure resonant scattering associated with cluster structures in unstable nuclei. The CAT-TPC consists of an electronic field cage, double-thick gas-electron-multiplier foils, a general-purpose digital data acquisition system, and a newly developed two-dimensional strip-readout structure. The CAT-TPC was operated using a ,4,He (96%) + CO,2, (4%) gas mixture at 400 mbar. The working gas also serves as an active target for tracking charged particles. The overall performance of the CAT-TPC was evaluated using a collimated ,α,-particle source. A time resolution of less than 20 ns and a position resolution of less than 0.2 mm were observed along the electron drift direction. Three-dimensional images of incident trajectories and scattering events can be clearly reconstructed under an angular resolution of approximately 0.45 degree.
AT-TPCReadout stripsGuard ringThree-dimensional image
J.N. Marx, D.R. Nygren, The Time Projection Chamber. Physics Today 31(10), 46-53 (1978). doi: 10.1063/1.2994775http://doi.org/10.1063/1.2994775
P. Juyal, K. L. Giboni, X. D. Ji et al. On proportional scintillation in very large liquid xenon detectors. NUCL SCI TECH 31, 93 (2020). doi: 10.1007/s41365-020-00797-4http://doi.org/10.1007/s41365-020-00797-4
K. L. Giboni, P. Juyal, E. Aprile et al. A LN2-based cooling system for a next-generation liquid xenon dark matter detector. NUCL SCI TECH 31, 76 (2020). doi: 10.1007/s41365-020-00786-7http://doi.org/10.1007/s41365-020-00786-7
H. Yang, Z. F. Xu, J. Tang et al. Spin coating of TPB film on acrylic substrate and measurement of its wavelength shifting efficiency. NUCL SCI TECH 31, 28 (2020). doi: 10.1007/s41365-020-0737-5http://doi.org/10.1007/s41365-020-0737-5
C. Brand, G. Cairanti, P. Charpentier et al., The DELPHI time projection chamber. Nucl. Instrum. Methods A 283, 567-572 (1989). doi: 10.1109/23.34417http://doi.org/10.1109/23.34417
M. Anderson, F. Bieser, R. Bossingham et al., The STAR time projection chamber: a unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Methods A 499, 659-678 (2003). doi: 10.1016/S0168-9002(02)01964-2http://doi.org/10.1016/S0168-9002(02)01964-2
J. Bachler, J. Bracinik, H.G. Fischer et al., Development of a TPC detector for the ALICE experiment. Nucl. Instrum. Methods A 419, 511-514 (1998). doi: 10.1016/S0168-9002(98)00858-4http://doi.org/10.1016/S0168-9002(98)00858-4
B.J. Zheng, Y.L. Li, Z.Y. Deng et al., Drift field improvement and test in a GEM-TPC prototype. Chin. Phys. C 35, 56-60 (2011). doi: 10.1088/1674-1137/35/1/012http://doi.org/10.1088/1674-1137/35/1/012
G.D. Alkhazov, M.N. Andronenko, A.V. Dobrovolsky et al., Nuclear matter distributions in 6He and 8He from small angle p-He scattering in inverse kinematics at intermediate energy. Phys. Rev. Lett. 78, 2313-2316 (1997). doi: 10.1103/PhysRevLett.78.2313http://doi.org/10.1103/PhysRevLett.78.2313
B. Blank, L. Hay, J. Huikari et al., A time projection chamber for the three-dimensional reconstruction of two-proton radioactivity events. Nucl. Instrum. Methods A 613, 65-78 (2010). doi: 10.1016/j.nima.2009.10.140http://doi.org/10.1016/j.nima.2009.10.140
X. Y. Liu, Y. W. Yang, R. Liu et al. Measurement of the neutron total cross section of carbon at the Back-n white neutron beam of CSNS. NUCL SCI TECH 30, 139 (2019). doi: 10.1007/s41365-019-0660-9http://doi.org/10.1007/s41365-019-0660-9
X. Y. Zhao, F. Liu, Z. Deng et al. GERO: a general SCA-based readout ASIC for micro-pattern gas detectors with configurable storage depth and on-chip digitizer. NUCL SCI TECH 30, 131 (2019). doi: 10.1007/s41365-019-0659-2http://doi.org/10.1007/s41365-019-0659-2
A. Fritsch, T. Suzuki, A. Tamii et al., High-resolution study of Gamow–Teller transitions in the 48Ti(3He, t)48V reaction. Phys. Rev. C 93, 064326 (2016). doi: 10.1103/PhysRevC.93.064326http://doi.org/10.1103/PhysRevC.93.064326
D. Suzuki, M. Ford, D. Bazin et al. Prototype AT-TPC: Toward a new generation active target time projection chamber for radioactive beam experiment. Nucl. Instrum. Methods A, 691,39-54 (2012). doi: 10.1016/j.nima.2012.06.050http://doi.org/10.1016/j.nima.2012.06.050
M. Caamano, W. Mittig, H. Savajols et al., Resonance state in 7H. Phys. Rev. Lett. 99, 062502 (2007). doi: 10.1103/PhysRevLett.99.062502http://doi.org/10.1103/PhysRevLett.99.062502
S. Bailey, M. Freer, S. Cruz et al., Energy levels of 18F from the 14N+ resonant reaction. Phys. Rev. C 90, 024302 (2014). doi: 10.1103/PhysRevC.90.024302http://doi.org/10.1103/PhysRevC.90.024302
T. Ahn, D.W. Bardayan, D. Bazin et al., The Prototype Active-Target Time-Projection Chamber used with TwinSol radioactive-ion beams. Nucl. Instrum. Methods B 376: 321-325 (2016). doi: 10.1016/j.nimb.2015.12.042http://doi.org/10.1016/j.nimb.2015.12.042
T. Furuno, T. Kawabata, H.J. Ong et al., Performance test of the MAIKo active target. Nucl. Instrum. Methods A 908, 215-224 (2018). doi: 10.1016/j.nima.2018.08.042http://doi.org/10.1016/j.nima.2018.08.042
D. Bazin, T. Ahn, Y. Ayyad et al., Low energy nuclear physics with active targets and time projection chambers. Progress in Particle and Nuclear Physics 114, 103790 (2020). doi: 10.1016/j.ppnp.2020.103790http://doi.org/10.1016/j.ppnp.2020.103790
Y. Liu, Y. L. Ye, Nuclear clustering in light neutron-rich nuclei, NUCL SCI TECH 29, 184 (2018). doi: 10.1007/s41365-018-0522-xhttp://doi.org/10.1007/s41365-018-0522-x
D. Suzuki, T. Ahn, D. Bazin et al., Cluster structure of neutron-rich 10Be and 14C via resonant alpha scattering. Nuovo Cimento C 39, 372 (2016). doi: 10.1393/ncc/i2016-16372-0http://doi.org/10.1393/ncc/i2016-16372-0
W. Mittig, S. Beceiro-Novo, A. Fritsch et al., Active Target detectors for studies with exotic beams: Present and next future. Nucl. Instrum. Methods A 784, 494-498 (2015). doi: 10.1016/j.nima.2014.10.048http://doi.org/10.1016/j.nima.2014.10.048
Z. H. Yang, Y. L. Ye, Z. H. Li et al., Observation of Enhanced Monopole Strength and Clustering in 12Be, Phys. Rev. Lett. 112, 162501 (2014). doi: 10.1103/PhysRevLett.112.162501http://doi.org/10.1103/PhysRevLett.112.162501
Y. Liu, Y. L. Ye, J. L. Lou et al., Positive-Parity Linear-Chain Molecular Band in 16C, Phys. Rev. Lett. 124, 192501 (2020). doi: 10.1103/PhysRevLett.124.192501http://doi.org/10.1103/PhysRevLett.124.192501
J.Y. Xu, Q.T. Li, Y.L. Ye et al., Performance of a small AT-TPC prototype. NUCL SCI TECH 29, 97 (2018). doi: 10.1007/s41365-018-0437-6http://doi.org/10.1007/s41365-018-0437-6
F. Sauli, New observations with the gas electron multiplier (GEM), Nucl. Instrum. Methods A 396, 50-66 (1997). doi: 10.1016/S0168-9002(97)00648-7http://doi.org/10.1016/S0168-9002(97)00648-7
H. B. Liu, Q. Liu, S. Chen et al., A study of thinner-THGEM, with some applications. Journal of Instrumentation, 7(06): C06001 (2012). doi: 10.1088/1748-0221/7/06/C06001http://doi.org/10.1088/1748-0221/7/06/C06001
Q. Liu, H. B. Liu, S. Chen et al., A successful application of thinner-THGEMs. Journal of Instrumentation 8(11): C11008. (2013). doi: 10.1088/1748-0221/8/11/C11008http://doi.org/10.1088/1748-0221/8/11/C11008
C. Shalem, R. Chechik, A. Breskin et al., Advances in Thick GEM-like gaseous electron multipliers—Part I: atmospheric pressure operation. Nucl. Instrum. Methods. A 558, 475-489 (2006). doi: 10.1016/j.nima.2005.12.241http://doi.org/10.1016/j.nima.2005.12.241
M. Cortesi, J. Yurkon, A. Stolz, Operation of a THGEM-based detector in low-pressure Helium. Journal of Instrumentation 10(2): P02012 (2015). doi: 10.1088/1748-0221/10/02/P02012http://doi.org/10.1088/1748-0221/10/02/P02012
M. Cortesi, S. Rost, W. Mittig et al., Multi-layer Thick Gas Electron Multiplier (M-THGEM): a new MPDG structure for high-gain operation at low-pressure. Review of Scientific Instruments 88(1): 013303 (2016). doi: 10.1063/1.49743331http://doi.org/10.1063/1.49743331
http://cern.ch/garfieldhttp://cern.ch/garfield
H.Y. Wu, Z.H. Li, H. Tan et al., A general-purpose digital data acquisition system (GDDAQ) at Peking University. Nucl. Instrum. Methods A 975, 164200 (2020). doi: 10.1016/j.nima.2020.164200http://doi.org/10.1016/j.nima.2020.164200
https://www.xia.com/DGF_Pixie-16.htmlhttps://www.xia.com/DGF_Pixie-16.html
H.B. You, Z.H. Yang, Y.L. Ye et al., Construction and calibration of the multi-neutron correlation spectrometer at Peking University. Nucl. Instrum. Methods A 728, 47-52 (2013). doi: 10.1016/j.nima.2013.06.037http://doi.org/10.1016/j.nima.2013.06.037
F. Wang, B. Nachman, and M. Garcia-Sciveres, Ultimate position resolution of pixel clusters with binary readout for particle tracking. Nucl. Instrum. Methods A 899, 10-15 (2018). doi: 10.1016/j.nima.2018.04.053http://doi.org/10.1016/j.nima.2018.04.053
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构