Simulation method for measurement of the cross-section of the 14N(n, α)11B reaction using a gridded ionization chamber
NUCLEAR PHYSICS AND INTERDISCIPLINARY RESEARCH|Updated:2021-09-07
|
Simulation method for measurement of the cross-section of the 14N(n, α)11B reaction using a gridded ionization chamber
Simulation method for measurement of the cross-section of the 14N(n, α)11B reaction using a gridded ionization chamber
Nuclear Science and Techniques2021年32卷第8期 文章编号:78
Affiliations:
1.State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
2.Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
Author bio:
Guo-Hui Zhang, guohuizhang@pku.edu.cn
Funds:
National Natural Science Foundation of China(12075008);Science and Technology on Nuclear Data Laboratory, China Nuclear Data Center, and the State Key Laboratory of Nuclear Physics and Technology, Peking University(NPT2020KFJ22)
Yi-Wei Hu, Hao-Yu Jiang, Zeng-Qi Cui, 等. Simulation method for measurement of the cross-section of the 14N(n, α)11B reaction using a gridded ionization chamber[J]. Nuclear Science and Techniques, 2021,32(8):78
Yi-Wei Hu, Hao-Yu Jiang, Zeng-Qi Cui, et al. Simulation method for measurement of the cross-section of the 14N(n, α)11B reaction using a gridded ionization chamber[J]. Nuclear Science and Techniques, 2021,32(8):78
Yi-Wei Hu, Hao-Yu Jiang, Zeng-Qi Cui, 等. Simulation method for measurement of the cross-section of the 14N(n, α)11B reaction using a gridded ionization chamber[J]. Nuclear Science and Techniques, 2021,32(8):78 DOI: 10.1007/s41365-021-00921-y.
Yi-Wei Hu, Hao-Yu Jiang, Zeng-Qi Cui, et al. Simulation method for measurement of the cross-section of the 14N(n, α)11B reaction using a gridded ionization chamber[J]. Nuclear Science and Techniques, 2021,32(8):78 DOI: 10.1007/s41365-021-00921-y.
Simulation method for measurement of the cross-section of the 14N(n, α)11B reaction using a gridded ionization chamber
摘要
Abstract
A simulation method for measurement of the cross-section of the ,14,N(,n, α,),11,B reaction with gas and solid samples using a gridded ionization chamber (GIC) has been established. Using the simulation, the experimental spectra of both ,14,N(,n,α,),11,B events and background from other reactions can be predicted, and the experimental scheme can be optimized. According to the simulation results, the optimal experimental parameters, including the pressure of the working gas and the compositions of the working gas and the sample, can be determined. In addition, the simulation results can be used to determine the valid event area and calculate the detection efficiency for valid events. A measurement of the cross-sections of the ,14,N(,n,α,),11,B reaction at ,E,n, = 4.25, 4.50, 4.75, 5.00, 5.25, and 5.50 MeV, based on the 4.5-MV Van de Graff accelerator at Peking University (PKU) using a GIC as the detector for the outgoing ,α, particles, has been performed. The good agreement of the spectra from the simulation and experiment demonstrated the universality of this simulation method, which can be used to accurately measure neutron-induced light-charged particle emission reactions.
关键词
Keywords
Gridded ionization chamberMonte Carlo simulationCathode-anode two-dimensional spectrum14N(nα)11B reaction
references
NuDat 2.8: nuclear structure and decay data, https://www.nndc.bnl.gov/nudat2/https://www.nndc.bnl.gov/nudat2/; 2020 [accessed 16 November 2020].
R.D. Syarifah, Z. Su'ud, K. Basar et al., Comparison of uranium plutonium nitride (U-Pu-N) and thorium nitride (Th-N) fuel for 500 MWth gas-cooled fast reactor (GFR) long life without refueling. Int. J. Energ. Res. 42, 214(2018). doi: 10.1002/er.3923http://doi.org/10.1002/er.3923
H.Y. Meng, Y.W. Yang, Z.L. Zhao, et al. Physical studies of minor actinide transmutation in the accelerator-driven sub-critical system. Nucl. Sci. Tech. 30, 91(2019). doi: 10.1007/s41365-019-0623-1http://doi.org/10.1007/s41365-019-0623-1
F. Gabbard, H. Bichsel, T.W. Bonner, The disintegration of nitrogen by fast neutrons. Nucl. Phys. 14, 277(1959). doi: 10.1016/0029-5582(59)90013-6http://doi.org/10.1016/0029-5582(59)90013-6
W. Scobel, R.W. Fink, M. Bormann, The reactions N14(n, α)B11 and N14(n, t)C12 observed with a gridded ionization chamber. Eur. Phys. J. A. 197, 124(1966). doi: 10.1007/BF01326742http://doi.org/10.1007/BF01326742
G.L. Morgan, Cross Sections for the 14N(n, p0), (n, α0), and (n, α1) reactions from 0.5 to 15 MeV. Nucl. Sci. Eng. 70, 163(1979). doi: 10.13182/NSE79-A19649http://doi.org/10.13182/NSE79-A19649
V.A. Khryachkov, B.D. Kuz’minov, M.V. Dunaev et al., Measurement of the cross sections of the reactions 14N(n, α)11B and 14N(n, t)12C at neutron energies 5.45–7.2 MeV. Atomic Energy 101, 760-765 (2006). doi: 10.1007/s10512-006-0165-6http://doi.org/10.1007/s10512-006-0165-6
G. Giorginis, A.I. Sergachev, T.A. Ivanova et al., (n, α) reactions cross section research at IPPE. EPJ Web Conf. 21, 3005 (2012). doi: 10.1051/epjconf/20122103005http://doi.org/10.1051/epjconf/20122103005
G.H. Zhang, Yu.M. Gledenov, G. Khuukhenkhuu et al., 149Sm(n, α)146Nd cross sections in the MeV region. Phys. Rev. Lett. 107, 252502 (2011). doi: 10.1103/PhysRevLett.107.252502http://doi.org/10.1103/PhysRevLett.107.252502
H.Y. Jiang, Z.Q. Cui, Y.W. Hu, et al., Cross-section measurements for 58,60,61Ni(n, α)55,57,58Fe reactions in the 4.50 - 5.50 MeV neutron energy region. Chinese Phys. C. 44, 114102(2020). doi: 10.1088/1674-1137/abadf2http://doi.org/10.1088/1674-1137/abadf2
Yu.M. Gledenov, M.V. Sedysheva, G. Khuukhenkhuu et al., Measurement of the cross sections of the 25Mg(n,α)22Ne reaction in the 4–6 MeV region. Phys. Rev. C. 98, 034605(2018). doi: 10.1103/PhysRevC.98.034605http://doi.org/10.1103/PhysRevC.98.034605
H.Y. Bai, H.Y. Jiang, Y. Lu, et al., 56,54Fe(n, α)53,51Cr cross sections in the MeV region. Phys. Rev. C. 99, 024619 (2019). doi: 10.1103/PhysRevC.99.024619http://doi.org/10.1103/PhysRevC.99.024619
G.H. Zhang, X. Liu, J.M. Liu, et al., Measurement of cross sections for the 10B(n, α)7Li reaction at 4.0 and 5.0 MeV using an asymmetrical twin gridded ionization chamber. Chin. Phys. Lett. 28, 082801(2011). doi: 10.1088/0256-307X/28/8/082801http://doi.org/10.1088/0256-307X/28/8/082801
Matlab, https://www.mathworks.cn/products/matlab.htmlhttps://www.mathworks.cn/products/matlab.html; 2020 [accessed 1 November 2020].
A.J. Koning, S. Hilaire, M.C. Duijvestijn et al., TALYS-1.95, http://www.talys.eu/http://www.talys.eu/; 2020 [accessed 1 November 2020].
J.F. Ziegler, SRIM-2013, http://www.srim.org/#SRIMhttp://www.srim.org/#SRIM; 2020 [accessed 1 November 2020].
G.F. Knoll, Radiation Detection and Measurement, 5th ed. (John Wiley & Son LTD, USA, 2000), pp. 129-130
A. Göök, F.-J. Hambsch, A. Oberstedt et al., Application of the shockley–ramo theorem on the grid inefficiency of frisch grid ionization chambers. Nucl. Instrum. Meth. A. 664, 289(2012). doi: 10.1016/j.nima.2011.10.052http://doi.org/10.1016/j.nima.2011.10.052
N. Ito, M. Baba, S. Matsuyama et al., Large solid angle spectrometer for the measurements of differential (n, charged-particle) cross sections. Nucl. Instrum. Meth. A. 337, 474(1994). doi: 10.1016/0168-9002(94)91117-7http://doi.org/10.1016/0168-9002(94)91117-7
G.A. Tutin, I.V. Ryzhov, V.P. Eismont et al., An ionization chamber with frisch grids for studies of high-energy neutron-induced fission. Nucl. Instrum. Meth. A. 457, 646(2001). doi: 10.1016/S0168-9002(00)00775-0http://doi.org/10.1016/S0168-9002(00)00775-0
O. Bunemann, T.E. Cranshaw, J. A. Harvey, Design of grid ionization chambers. Can. J. Nurs. Res. 27a, 191(1949). doi: 10.1139/cjr49a-019http://doi.org/10.1139/cjr49a-019
H.Y. Bai, Z.M. Wang, L.Y. Zhang et al., Study of the wall effect of the sample position well of the frisch-grid ionization chamber. Appl. Radiat. Isot. 125, 34(2017). doi: 10.1016/j.apradiso.2017.04.003http://doi.org/10.1016/j.apradiso.2017.04.003
H.Y. Bai, Z.M. Wang, L.Y. Zhang et al., Simulation of the neutron response matrix of an ej309 liquid scintillator. Nucl. Instrum. Meth. A 886, 109 (2018). doi: 10.1016/j.nima.2017.12.072http://doi.org/10.1016/j.nima.2017.12.072
A characterization study on perovskite X-ray detector performance based on a digital radiography system
Quantitative modeling, optimization, and verification of 63Ni-powered betavoltaic cells based on three-dimensional ZnO nanorod arrays
Hybrid model for muon tomography and quantitative analysis of image quality
Monte Carlo simulation of neutron sensitivity of microfission chamber in neutron flux measurement
A novel 4D resolution imaging method for low and medium atomic number objects at the centimeter scale by coincidence detection technique of cosmic-ray muon and its secondary particles
相关作者
暂无数据
相关机构
University of Electronic Science and Technology of China
Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University