1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
Da-Zhang Huang huangdazhang@zjlab.org.cn
Scan for full text
A compact electron storage ring for lithographical applications[J]. 核技术(英文版), 2021,32(9):91
Si-Qi Shen, Da-Zhang Huang, Zhen-Tang Zhao, et al. A compact electron storage ring for lithographical applications[J]. Nuclear Science and Techniques, 2021,32(9):91
A compact electron storage ring for lithographical applications[J]. 核技术(英文版), 2021,32(9):91 DOI: 10.1007/s41365-021-00924-9.
Si-Qi Shen, Da-Zhang Huang, Zhen-Tang Zhao, et al. A compact electron storage ring for lithographical applications[J]. Nuclear Science and Techniques, 2021,32(9):91 DOI: 10.1007/s41365-021-00924-9.
The physical design for a novel low-energy compact-storage-ring-based extreme ultraviolet (EUV) light source was systemically studied. The design process considers the linear and nonlinear beam optics, including transverse matching and the optimization of the dynamic aperture, momentum aperture, and beam lifetime. With a total circumference of 36.7 m and a beam energy of 400 MeV, the storage ring can operate with an average beam current of up to 1 A. With the undulator as the radiator, this facility has the potential to emit EUV radiation at 13.5 nm with an average power exceeding 10 W within the bandwidth. In addition, the collective instabilities of the lattice at high beam current were analyzed; it was found that the typical instabilities which may occur in an electron storage ring can be reasonably controlled in our design. With the advantages of variable beam energy and current, this design exhibits great promise as a new candidate for various extreme ultraviolet (EUV) lithographical applications requiring tunable radiation power.
Storage ringExtreme ultraviolet (EUV)EUV Lithography (EUVL)
O. Wood, EUV Lithography: New Metrology Challenges. AIP Conference Proceedings 931, 375 (2007). doi: 10.1063/1.2799401http://doi.org/10.1063/1.2799401
A. Hassanein, T. Sizyuk, Laser produced plasma sources for nanolithography—Recent integrated simulation and benchmarking. Phys. Plasmas 20, 053105 (2013). doi: 10.1063/1.4807379http://doi.org/10.1063/1.4807379
U. Stamm, Extreme ultraviolet light sources for use in semiconductor lithography-State of the art and future development, J of Phys D Applied Physics 37(23):3244 (2004). doi: 10.1088/0022-3727/37/23/005http://doi.org/10.1088/0022-3727/37/23/005
X. Deng, A. Chao, J. Feikes et al., Experimental demonstration of the mechanism of steady-state microbunching. Nature 590, 576-579 (2021). doi: 10.1038/S41586-021-03203-0http://doi.org/10.1038/S41586-021-03203-0
C. Feng, X. Deng, Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 29, 160 (2018). doi: 10.1007/s41365-018-0490-1http://doi.org/10.1007/s41365-018-0490-1
C. Feng and Z. Zhao, A storage ring based free-electron laser for generating ultrashort coherent euv and x-ray radiation. Scientific Reports 7, 4724 (2017). doi: 10.1038/s41598-017-04962-5http://doi.org/10.1038/s41598-017-04962-5
Y. Ekinci, T. Garvey, A Streun et al., A compact high-brightness accelerator-based EUV source for actinic mask inspection. in High-Brightness Sources and Light-driven Interactions, OSA Technical Digest (online) (Optical Society of America, 2018), paper ET3B.5. doi: 10.1364/EUVXRAY.2018.ET3B.5http://doi.org/10.1364/EUVXRAY.2018.ET3B.5
R. Klein, R. Thornagel, G. Ulm et al., Status of the metrology light source. J. Electron Spectrosc. 184, 331-334, (2011). doi: 10.1016/j.elspec.2010.09.008http://doi.org/10.1016/j.elspec.2010.09.008
S. Y. Lee, Accelerator Physics, Third Edition, World Scientific, 2013. ISBN: 978-981-4374-94-1.
Y. Wang, M. Borland, Pelegant: A parallel accelerator simulation code for electron generation and tracking. AIP Conf. Proc. 877, 241 (2006). doi: 10.1063/1.2409141http://doi.org/10.1063/1.2409141
J. Bengtsson, A. Streun, B. Singh et al., Control of the nonlinear dynamics for medium energy synchrotron light source. Proc. of IPAC08, 4037-4041 (2018), Vancouver, Canada. doi: 10.18429/JACoW-IPAC2018-THPMF006http://doi.org/10.18429/JACoW-IPAC2018-THPMF006.
X. Huang, J. Corbelt, J. Safranek et al., An algorithm for online optimization of accelerators. Nucl. Instrum. Meth. A 726, 77-83 (2013). doi: 10.1016/j.nima.2013.05.046http://doi.org/10.1016/j.nima.2013.05.046.
A. Terebilo, Accelerator modeling with matlab accelerator toolbox. Proc. of PAC01, 3203-3205 (2001). Chicago, United States, 2001. doi: 10.1109/PAC.2001.988056http://doi.org/10.1109/PAC.2001.988056
W.B. Song, L. Shang, F.L. Shang et al., Nonlinear kicker design and research for Hefei advanced light facility. Nuclear Techniques 44(6): 060202 (2021). doi: 10.11889/j.0253-3219.2021.hjs.44.060202http://doi.org/10.11889/j.0253-3219.2021.hjs.44.060202 (in Chinese)
J. Tong, M. Gu, Bo Liu et al., Design simulation and magnetic field measurement of eddy-current type thin septum magnet for beam injection of diffraction limited storage ring. Nuclear Techniques 43(12): 120202 (2020). doi: 10.11889/j.0253-3219.2020.hjs.43.120202http://doi.org/10.11889/j.0253-3219.2020.hjs.43.120202 (in Chinese)
R. Nagaoka, K.L.F. Bane, Collective effects in a diffraction limited storage ring. J. Synchrotron Rad. 21, 937-960 (2014). doi: 10.1107/S1600577514015215http://doi.org/10.1107/S1600577514015215
N. Carmignani, Touschek lifetime studies and optimization of the european synchrotron radiation facility. Ph.D. thesis, University of Pisa, Italy (2016). doi: 10.1007/978-3-319-25798-3http://doi.org/10.1007/978-3-319-25798-3
P.S. Dester, F. Sa, L. Liu, Energy acceptance and on momentum aperture optimization for the Sirius project. J. Phys. Conf. Series 874(1):012068 (2017). doi: 10.1088/1742-6596/874/1/012068http://doi.org/10.1088/1742-6596/874/1/012068
W. Wu, K. Xuan, W. Xu et al., Development of a control system for the fourth-harmonic cavity of the HLS storage ring. Nucl. Sci. Tech. 29:153 (2018). doi: 10.1007/s41365-020-00836-0http://doi.org/10.1007/s41365-020-00836-0
K. Y. Ng, Physics of Intensity Dependent Beam Instabilities, World Scientific, 2006. ISBN: 981-256-342-3.
A.W. Chao, K.H. Mess, M. Tigner et al., Handbook of Accelerator Physics and Engineering, 2nd Edition, World Scientific, 2013. doi: 10.1142/8543http://doi.org/10.1142/8543
H. Wiedemann, Particle Accelerator Physics, 3rd edition, Springer-Verlag, 2015. doi: 10.1007/978-3-319-18317-6http://doi.org/10.1007/978-3-319-18317-6
R. Nagaoka, L. Cassinari, J.-C. Denard et al., Transverse feedback development at SOLEIL. Proceedings of PAC07, Albuquerque, United States, 2007. doi: 10.1109/PAC.2007.4440145http://doi.org/10.1109/PAC.2007.4440145
M.S. Zisman, ZAP User's Manual, LBL-21270 (1986). doi: 10.2172/6609901http://doi.org/10.2172/6609901
P. Kernel, R. Nagaoka, J.-L. Revol et al., High current single bunch transverse instability at the ESRF: A new approach. Proceedings of EPAC 2000, Vienna, Austria, 2000. https://accelconf.web.cern.ch/e00/PAPERS/WEP4B04.pdfhttps://accelconf.web.cern.ch/e00/PAPERS/WEP4B04.pdf
T. O. Raubenheimer, F. Zimmermann, Fast beam-ion instability. I. Linear theory and simulations. Phys. Rev. E 52, 5487 (1995). doi: 10.1103/PhysRevE.52.5487http://doi.org/10.1103/PhysRevE.52.5487
P.C. Liu, Q.Y. Liu, Z.J. Ma et al., Design of gas bremsstrahlung absorber at high energy photon source beamlines. Nuclear Techniques 43(9): 090102 (2020). doi: 10.11889/j.0253-3219.2020.hjs.43.090102http://doi.org/10.11889/j.0253-3219.2020.hjs.43.090102 (in Chinese)
K. Ohmi, Numerical study for the two-beam instability due to ions in electron-storage rings. Phys. Rev. E 55, 7550 (1997). doi: 10.1103/PhysRevE.55.7550http://doi.org/10.1103/PhysRevE.55.7550
T. Tanaka, Numerical methods for characterization of synchrotron radiation based on the Wigner function method. Phys. Rev. ST Accel. Beams 17, 060702 (2014). doi: 10.1103/PhysRevSTAB.17.060702http://doi.org/10.1103/PhysRevSTAB.17.060702
T. Tanaka, Coherent mode decomposition using mixed Wigner functions of Hermite–Gaussian beams. Optics Letters 42, 1576-1579 (2017). doi: 10.1364/OL.42.001576http://doi.org/10.1364/OL.42.001576
T. Tanaka, Universal representation of undulator phase errors, Phys. Rev. Accel. Beams 21, 110704 (2018). doi: 10.1103/PhysRevAccelBeams.21.110704http://doi.org/10.1103/PhysRevAccelBeams.21.110704
S. Casalbuoni, N. Glamann, A. Grau et al., Superconducting undulators: from development towards a commercial product. Synchrotron Radiation News 31:3, 24-28 (2018), doi: 10.1080/08940886.2018.1460171http://doi.org/10.1080/08940886.2018.1460171
0
浏览量
7
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构