1.School of Physics and Optoelectronic Technology, South China University of Technology, Guangzhou 510640, China
2.College of Electrical Energy and Power Engineering, Yangzhou University, Yangzhou 225000, China
fengzhq@scut.edu.cn
Scan for full text
Fei Niu, Peng-Hui Chen, Zhao-Qing Feng. Systematics on production of superheavy nuclei
Fei Niu, Peng-Hui Chen, Zhao-Qing Feng. Systematics on production of superheavy nuclei
Fei Niu, Peng-Hui Chen, Zhao-Qing Feng. Systematics on production of superheavy nuclei
Fei Niu, Peng-Hui Chen, Zhao-Qing Feng. Systematics on production of superheavy nuclei
The fusion dynamics of the formation of superheavy nuclei were investigated thoroughly within the dinuclear system model. The Monte Carlo approach was implemented in the nucleon transfer process to include all possible orientations, at which the dinuclear system is assumed to be formed at the touching configuration of dinuclear fragments. The production cross sections of superheavy nuclei Cn, Fl, Lv, Ts, and Og were calculated and compared with the available data from Dubna. The evaporation residue excitation functions in the channels of pure neutrons and charged particles were systematically analyzed. The combinations of ,44,Sc,48,50,Ti,49,51,V,52,54,Cr,58,62,Fe, and ,62,64,Ni bombarding the actinide nuclides ,238,U,244,Pu,248,Cm,247,249,Bk,249,251,Cf,252,Es, and ,243,Am were calculated to produce the superheavy elements with ,Z,=119-122. We obtained that the production cross sections sensitively depend on the neutron richness of the reaction system. The structure of the evaporation residue excitation function is related to the neutron separation energy and fission barrier of the compound nucleus.
Dinuclear system modelFusion-evaporation reactionsSuperheavy nucleiCross sections
Yu. Ts. Oganessian, F. S. Abdullin, P. D. Bailey et al., Synthesis of a New Element with Atomic Number Z=117. Phys. Rev. Lett. 104, 142502 (2010). doi: 10.1103/PhysRevLett.104.142502http://doi.org/10.1103/PhysRevLett.104.142502
A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, Closed shells for Z>82 and N>126 in a diffuse potential well. Phys. Lett. 22, 500 (1966). doi: 10.1016/0031-9163(66)91243-1http://doi.org/10.1016/0031-9163(66)91243-1
Z. Q. Feng, Nuclear dynamics and particle production near threshold energies in heavy-ion collisions. Nucl. Sci. Tech. 29, 40 (2018). doi: 10.1007/s41365-018-0379-zhttp://doi.org/10.1007/s41365-018-0379-z
A. Sobiczewski and K. Pomorski, Description of structure and properties of superheavy nuclei. Prog. Part. Nucl. Phys. 58, 292 (2007). doi: 10.1016/j.ppnp.2006.05.001http://doi.org/10.1016/j.ppnp.2006.05.001
S. Ćwiok, P.-H. Heenen, and W. Nazarewicz, Shape coexistence and triaxiality in the superheavy nuclei. Nature (London) 433, 705 (2005). doi: 10.1038/nature03336http://doi.org/10.1038/nature03336
S. Hofmann, D. Ackermann, S. Antalic et al., Probing shell effects at Z= 120 and N= 184. GSI Scientific Report-2007, 131 (2008).
Yu.Ts. Oganessian, V.K. Utyonkov, Yu. V. Lobanov et al., Attempt to produce element 120 in the 244Pu+58Fe reaction. Phys. Rev. C 79, 024603 (2009). doi: 10.1103/PhysRevC.79.024603http://doi.org/10.1103/PhysRevC.79.024603
S. Hofmann, et al., Physics experiments on superheavy elements at the GSI SHIP. GSI Scientific Report-2011, 205 (2012).
S. Hofmann, S. Heinz, R. Mann et al., Review of even element super-heavy nuclei and search for element 120. Eur. Phys. J. A 52, 180 (2016). doi: 10.1140/epja/i2016-16180-4http://doi.org/10.1140/epja/i2016-16180-4
J. Khuyagbaatar, A. Yakushev, Ch.E. Dullmann et al., The Superheavy Element Search Campaigns at TASCA. GSI Scientific Report-2012, 131 (2013).
H. M. Albers, J. Khuyagbaatar, D.J. Hinde et al., Zeptosecond contact times for element Z=120 synthesis. Phys. Lett. B 808, 135626 (2020). doi: 10.1016/j.physletb.2020.135626http://doi.org/10.1016/j.physletb.2020.135626
E. K. Hulet, R.W. Lougheed, J.F. Wild et al., Search for superheavy elements in the bombardment of 248Cm with 48Ca. Phys. Rev. Lett. 39, 385 (1977). doi: 10.1103/PhysRevLett.39.385http://doi.org/10.1103/PhysRevLett.39.385
M. Schädel, J.V. Kratz, H. Ahrens et al., Isotope distributions in the reaction of 238U with 238U. Phys. Rev. Lett., 41, 469 (1978). doi: 10.1103/PhysRevLett.41.469http://doi.org/10.1103/PhysRevLett.41.469
Yu.Ts. Oganessian, A.S. Iljnov, A.G. Demin et al., Experiments on the production of fermium neutron-deficient isotopes and new possibilities of synthesizing elements with Z>100. Nucl. Phys. A 239, 353 (1975). doi: 10.1016/0375-9474(75)90456-Xhttp://doi.org/10.1016/0375-9474(75)90456-X
Yu. Ts. Oganessian, A.S. Iljnov, A.G. Demin et al., Experiments on the synthesis of neutron-deficient kurchatovium isotopes in reactions induced by 50Ti Ions. Nucl. Phys. A 239, 157 (1975). doi: 10.1016/0375-9474(75)91140-9http://doi.org/10.1016/0375-9474(75)91140-9
S. Hofmann and G. Münzenberg, Discovery of the Heaviest Elements. Rev. Mod. Phys. 72, 733 (2000). doi: 10.1103/RevModPhys.72.733http://doi.org/10.1103/RevModPhys.72.733
G. Münzenberg, From bohrium to copernicium and beyond SHE research at SHIP. Nucl. Phys. A 944, 5 (2015). doi: 10.1016/j.nuclphysa.2015.06.008http://doi.org/10.1016/j.nuclphysa.2015.06.008
K. Morita, K. Morimoto, D. Kaji et al., Production and decay properties of 272111 and its daughter nuclei. J. Phys. Soc. Jpn., 73, 2593 (2004). doi: 10.1143/JPSJ.73.1738http://doi.org/10.1143/JPSJ.73.1738
Yu. Ts. Oganessian, A. V. Yeremin, A. G. Popeko et al., Synthesis of nuclei of the superheavy element 114 in reactions induced by 48Ca. Nature (London), 400, 242 (1999). doi: 10.1038/22281http://doi.org/10.1038/22281
Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov et al., Synthesis of superheavy nuclei in the 48Ca+244Pu reaction: 288114. Phys. Rev. C 62, 041604(R) (2000). doi: 10.1103/PhysRevC.62.041604http://doi.org/10.1103/PhysRevC.62.041604
Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov et al., Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions. Phys. Rev. C 74, 044602 (2006). doi: 10.1103/PhysRevC.74.044602http://doi.org/10.1103/PhysRevC.74.044602
Yu. Ts. Oganessian and V. K. Utyonkov, Superheavy nuclei from 48Ca-induced reactions. Nucl. Phys. A 944, 62 (2015). doi: 10.1016/j.nuclphysa.2015.07.003http://doi.org/10.1016/j.nuclphysa.2015.07.003
Z.Y. Zhang, Z.G. Gan, L. Ma et al., Observation of the Superheavy Nuclide 271Ds. Chin. Phys. Lett., 29, 012502 (2012). doi: 10.1088/0256-307X/29/1/012502http://doi.org/10.1088/0256-307X/29/1/012502
S. Bjornholm, W.J. Swiatecki, Dynamical aspects of nucleus-nucleus collisions. Nucl. Phys. A 391, 471 (1982). doi: 10.1016/0375-9474(82)90621-2http://doi.org/10.1016/0375-9474(82)90621-2
W. J. Swiatecki, K. Siwek-Wilczynska, and J. Wilczynski, Fusion by diffusion. II. Synthesis of transfermium elements in cold fusion reactions. Phys. Rev. C 71, 014602 (2005). doi: 10.1103/PhysRevC.71.014602http://doi.org/10.1103/PhysRevC.71.014602
T. Cap, K. Siwek-Wilczynska, and J. Wilczynski, Nucleus-nucleus cold fusion reactions analyzed with the l-dependent "fusion by diffusion" model. Phys. Rev. C 83, 054602 (2011). doi: 10.1103/PhysRevC.83.054602http://doi.org/10.1103/PhysRevC.83.054602
V. Zagrebaev and W. Greiner, Low-energy collisions of heavy nuclei: dynamics of sticking, mass transfer and fusion. J. Phys. G 34, 1 (2007) doi: 10.1088/0954-3899/34/1/001http://doi.org/10.1088/0954-3899/34/1/001
V. Zagrebaev and W. Greiner, New way for the production of heavy neutron-rich nuclei. J. Phys. G 35, 125103 (2008). doi: 10.1088/0954-3899/35/12/125103http://doi.org/10.1088/0954-3899/35/12/125103
Z.H. Liu and J.D. Bao, Role of the coupling between neck and radial degrees of freedom in evolution from dinucleus to mononucleus. Phys Rev C 83, 044613 (2011). doi: 10.1103/PhysRevC.83.044613http://doi.org/10.1103/PhysRevC.83.044613
G.G. Adamian, N.V. Antonenko, W. Scheid et al., Treatment of competition between complete fusion and quasifission in collisions of heavy nuclei. Nucl. Phys. A 627, 361 (1997). doi: 10.1063/1.55172http://doi.org/10.1063/1.55172
G.G. Adamian, N.V. Antonenko, W. Scheid et al., Fusion cross sections for superheavy nuclei in the dinuclear system concept. Nucl. Phys. A 633, 409 (1998). doi: 10.1016/S0375-9474(98)00124-9http://doi.org/10.1016/S0375-9474(98)00124-9
Z.Q. Feng, G.M. Jin, F. Fu et al., Production cross sections of superheavy nuclei based on dinuclear system model. Nucl. Phys. A 771, 50 (2006). doi: 10.1016/j.nuclphysa.2006.03.002http://doi.org/10.1016/j.nuclphysa.2006.03.002
Z.Q. Feng, G.M. Jin, J.Q. Li et al., Formation of superheavy nuclei in cold fusion reactions. Phys. Rev. C 76, 044606 (2007). doi: 10.1103/PhysRevC.76.044606http://doi.org/10.1103/PhysRevC.76.044606
Z.Q. Feng, G.M. Jin, J.Q. Li, Dynamics in production of superheavy nuclei in low-energy heavy-ion collisions. Nucl. Phys. Rev. 28, 1 (2011). doi: 10.11804/NuclPhysRev.28.01.001http://doi.org/10.11804/NuclPhysRev.28.01.001
L. Guo, C. Shen, C. Yu et al., Isotopic trends of quasifission and fusion-fission in the reactions 48Ca+239,244Pu. Phys. Rev. C 98, 064609 (2018). doi: 10.1103/PhysRevC.98.064609http://doi.org/10.1103/PhysRevC.98.064609
V.I. Zagrebaev and W. Greiner, Cross sections for the production of superheavy nuclei. Nucl. Phys. A 944, 257 (2015). doi: 10.1016/j.nuclphysa.2015.02.010http://doi.org/10.1016/j.nuclphysa.2015.02.010
A.K. Nasirov, G. Giardina, G. Mandaglio et al., Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z=120 element. Phys. Rev. C 79, 024606 (2009). doi: 10.1103/PhysRevC.79.024606http://doi.org/10.1103/PhysRevC.79.024606
Z.Q. Feng, G.M. Jin, J.Q. Li et al., Production of heavy and superheavy nuclei in massive fusion reactions. Nucl. Phys. A 816, 33 (2009). doi: 10.1016/j.nuclphysa.2008.11.003http://doi.org/10.1016/j.nuclphysa.2008.11.003
Z.G. Gan, X.H. Zhou, M.H. Huang et al., Predictions of synthesizing element 119 and 120. Sci. China Phys. Mech. Astron., 54, s61 (2011). doi: 10.1007/s11433-011-4436-4http://doi.org/10.1007/s11433-011-4436-4
N. Wang, E. G. Zhao, and W. Scheid, Theoretical study of the synthesis of superheavy nuclei with Z=119 and 120 in heavy-ion reactions with transuranium targets. Phys. Rev. C 85, 041601(R) (2012). doi: 10.1103/PhysRevC.85.041601http://doi.org/10.1103/PhysRevC.85.041601
F. Li, L. Zhu, Z. H. Wu et al., Predictions for the synthesis of superheavy elements Z=119 and 120. Phys. Rev. C 98, 014618 (2018). doi: 10.1103/PhysRevC.98.014618http://doi.org/10.1103/PhysRevC.98.014618
G. G. Adamian, N. V. Antonenko, H. Lenske et al., Predictions of identification and production of new superheavy nuclei with Z=119 and 120. Phys. Rev. C 101, 034301 (2020). doi: 10.1103/PhysRevC.101.034301http://doi.org/10.1103/PhysRevC.101.034301
G. G. Adamian, N. V. Antonenko, A. Diaz-Torres, and S. Heinz, How to extend the chart of nuclides? Eur. Phys. J. A 56, 47 (2020). doi: 10.1140/epja/s10050-020-00046-7http://doi.org/10.1140/epja/s10050-020-00046-7
Z. Q. Feng, G. M. Jin, J. Q. Li, Production of new superheavy Z=108-114 nuclei with 238U, 244Pu and 248,250Cm targets. Phys. Rev. C 80, 057601 (2009). doi: 10.1103/PhysRevC.80.057601http://doi.org/10.1103/PhysRevC.80.057601
Z. Q. Feng, Production of neutron-rich isotopes around N=126 in multinucleon transfer reactions. Phys. Rev. C 95, 024615 (2017). doi: 10.1103/PhysRevC.95.024615http://doi.org/10.1103/PhysRevC.95.024615
P. H. Chen, Z. Q. Feng, F. Niu et al., Production of proton-rich nuclei around Z = 84-90 in fusion-evaporation reactions. Eur. Phys. J. A 53, 9 (2017). doi: 10.1140/epja/i2017-12281-xhttp://doi.org/10.1140/epja/i2017-12281-x
P.H. Chen, Z.Q. Feng, J.Q. Li et al., A statistical approach to describe highly excited heavy and superheavy nuclei. Chin. Phys. C 40, 091002 (2016). doi: 10.1088/1674-1137/40/9/091002http://doi.org/10.1088/1674-1137/40/9/091002
P. H. Chen, F. Niu, Y.F. Guo et al., Nuclear dynamics in multinucleon transfer reactions near Coulomb barrier energies. Nucl. Sci. Tech. 29, 185 (2018). doi: 10.1007/s41365-018-0521-yhttp://doi.org/10.1007/s41365-018-0521-y
F. Niu, P.H. Chen, H.G. Cheng et al., Multinucleon transfer dynamics in nearly symmetric nuclear reactions. Nucl. Sci. Tech. 31, 59 (2020). doi: 10.1007/s41365-020-00770-1http://doi.org/10.1007/s41365-020-00770-1
G.G. Adamian, N. Antonenko, W. Scheid, Characteristics of quasifission products within the dinuclear system model. Phys. Rev. C 68, 034601 (2003). doi: 10.1103/PhysRevC.68.034601http://doi.org/10.1103/PhysRevC.68.034601
G.G. Adamian, N.V. Antonenko, R.V. Jolos et al., Effective nucleus-nucleus for calculation of potential energy of a dinuclear system. Int. J. Mod. Phys. E 5, 191 (1996). doi: 10.1142/S0218301396000098http://doi.org/10.1142/S0218301396000098
C.Y. Wong, Interaction barrier in charged-particle nuclear reactions. Phys. Rev. Lett. 31, 766 (1973). doi: 10.1103/PhysRevLett.31.766http://doi.org/10.1103/PhysRevLett.31.766
J.Q. Li and G.W. olschin, Distribution of the dissipated angular momentum in heavy-ion collisions. Phys. Rev. C 27, 590 (1983). doi: 10.1103/PhysRevC.27.590http://doi.org/10.1103/PhysRevC.27.590
P. Möller et al., Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185 (1995). doi: 10.1006/adnd.1995.1002http://doi.org/10.1006/adnd.1995.1002
Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov et al., Measurements of cross sections and decay properties of the isotopes of elements 112, 114 and 116 Produced in the Fusion Reactions 233,238U, 242Pu, and 248Cm + 48Ca. Phys. Rev. C 70, 064609 (2004). doi: 10.1103/PhysRevC.70.064609http://doi.org/10.1103/PhysRevC.70.064609
P.H. Chen, F. Niu, and Z.Q. Feng, Production mechanism of proton-rich actinide isotopes in fusion reactions and via multinucleon transfer processes. Phys. Rev. C 102, 014621 (2020). doi: 10.1103/PhysRevC.102.014621http://doi.org/10.1103/PhysRevC.102.014621
D.C. Zhang, H.G. Cheng and Z.Q. Feng, Hyperon dynamics in heavy-ion collisions near threshold energy. Chin. Phys. Lett. 38, 092501 (2021). doi: 10.1088/0256-307X/38/9/092501http://doi.org/10.1088/0256-307X/38/9/092501
Y.T. Oganessian, F.S. Abdullin, C. Alexander et al., Experimental studies of the 249Bk+48Ca reaction including decay properties and excitation function for isotopes of element 117 and discovery of the new isotope 277Mt. Phys. Rev. C 87, 054621 (2013). doi: 10.1103/PhysRevC.87.054621http://doi.org/10.1103/PhysRevC.87.054621
V.I. Zagrebaev and W. Greiner, Synthesis of superheavy nuclei: A search for new production reactions. Phys. Rev. C 78, 034610 (2008). doi: 10.1103/physrevc.78.034610http://doi.org/10.1103/physrevc.78.034610
V.I. Zagrebaev, A.V. Karpov, and W. Greiner, Possibilities for synthesis of new isotopes of superheavy elements in fusion reactions. Phys. Rev. C 85, 014608 (2012). doi: 10.1103/PhysRevC.85.014608http://doi.org/10.1103/PhysRevC.85.014608
K. Siwek-Wilczynska, T. Cap, M. Kowal et al., Predictions of the fusion-by-diffusion model for the synthesis cross sections of Z=114-120 elements based on macroscopic-microscopic fission barriers. Phys. Rev. C 86, 014611 (2012). doi: 10.1103/PhysRevC.86.014611http://doi.org/10.1103/PhysRevC.86.014611
Z.H. Liu and J.D. Bao, Calculation of the evaporation residue cross sections for the synthesis of the superheavy element Z=119 via the 50Ti + 249Bk hot fusion reaction. Phys. Rev. C 84, 031602(R) (2011). doi: 10.1103/PhysRevC.84.031602http://doi.org/10.1103/PhysRevC.84.031602
K. Siwek-Wilczynska, T. Cap, and J. Wilczynski, How can one synthesize the element Z = 120? Int. J. Mod. Phys. E 19, 500 (2010). doi: 10.1142/S021830131001490Xhttp://doi.org/10.1142/S021830131001490X
A.K. Nasirov, G. Mandaglio, G. Giardina et al., Effects of the entrance channel and fission barrier in the synthesis of superheavy element Z=120. Phys. Rev. C 84, 044612 (2011). doi: 10.1103/PhysRevC.84.044612http://doi.org/10.1103/PhysRevC.84.044612
M. Bender, K. Rutz, P.-G. Reinhard et al., Shell structure of superheavy nuclei in self-consistent mean-field models. Phys. Rev. C 60, 034304 (1999). doi: 10.1103/PhysRevC.60.034304http://doi.org/10.1103/PhysRevC.60.034304
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构