1.Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics (IHEP), Chinese Academy of Science, Beijing 100049, China
2.Beijing Normal University, Beijing 100875, China
panwm@ihep.ac.cn
Scan for full text
Fang Yan, Hui-Ping Geng, Cai Meng, 等. Commissioning experiences with the Spoke-based CW superconducting proton linac[J]. Nuclear Science and Techniques, 2021,32(10):105
Fang Yan, Hui-Ping Geng, Cai Meng, et al. Commissioning experiences with the Spoke-based CW superconducting proton linac[J]. Nuclear Science and Techniques, 2021,32(10):105
Fang Yan, Hui-Ping Geng, Cai Meng, 等. Commissioning experiences with the Spoke-based CW superconducting proton linac[J]. Nuclear Science and Techniques, 2021,32(10):105 DOI: 10.1007/s41365-021-00950-7.
Fang Yan, Hui-Ping Geng, Cai Meng, et al. Commissioning experiences with the Spoke-based CW superconducting proton linac[J]. Nuclear Science and Techniques, 2021,32(10):105 DOI: 10.1007/s41365-021-00950-7.
The 10-MeV Accelerator-Driven Subcritical (ADS) system injector-I test stand at the Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrating the feasibility of the spoke-based super conducting (SC) linear accelerator (linac) for the ADS project in China. The injector adopted a four-vane copper structure radio frequency quadrupole (RFQ) with an output energy of 3.2 MeV and an SC section accommodating 14 ,β,g,=0.12 single spoke cavities, 14 SC solenoids, and 14 cold beam position monitors (BPMs). A 10-MeV pulsed beam with a beam current of 10 mA and a 2-mA continuous wave (CW) beam were successfully shoting through. The commissioning results confirmed the feasibility of using a 325-MHz spoke-type cavity for accelerating the proton beam in the low ,β, and medium ,β, sections. This paper describes the results achieved, the difficulties encountered, and the experiences obtained during commissioning.
Superconducting proton linacSpoke cavityHigh intensityCW commissioning
W.L. Zhan, Accelerator Driven Advanced Nuclear Energy System, IHEP tribune invited report, Beijing, China, Dec. 16th, 2020.
Z.J. Wang, F.F. Wang, G.R. Huang et al., The Status of CiADS Superconducting LINAC. Proc. 10th Int. Particle accelerator, Conf. (IPAC’19), Melbourne, Australia. http://accelconf.web.cern.ch/ipac2019/papers/MOPTS059.pdfhttp://accelconf.web.cern.ch/ipac2019/papers/MOPTS059.pdf doi: 10.18429/JACoW-IPAC2019-MOPTS059http://doi.org/10.18429/JACoW-IPAC2019-MOPTS059
F. Yan, S.L. Pei, H.P. Geng et al., Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system. Phys. Rev. ST Accel. Beams 18, 054201 (2015). doi: 10.1103/PhysRevSTAB.18.054201http://doi.org/10.1103/PhysRevSTAB.18.054201
J. Y. Tang et al., IHEP-CADS-Report, 2012.
Z.-J. Wang, Y. He, H. Jia et al., Beam commissioning for a superconducting proton linac, Phys. Rev. Accel. Beams 19, 120101 (2016). doi: 10.1103/PhysRevAccelBeams.19.120101http://doi.org/10.1103/PhysRevAccelBeams.19.120101
S. Nagaitsev, Project X - New Multi Megawatt Proton Source at Fermilab. Proc. 24th Particle Accelerator Conf. (PAC’11, New York, NY, USA). 2566–2569 (2011).
P. N. Ostroumov, New J. Phys. 8, 281-281 (2006).
J.-L. Biarrotte, F. Bouly, S. Bousson et al.. Accelerator R&D for the European ADS demonstrator. Proc. 23rd Particle Accelerator Conf. (PAC’09), Vancouver, Canada. 668–672, (2009).
P. A. P. Nghiem et al., The IFMIF-EVEDA Challenges and their Treatment. Proc. 46th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB’10), Morschach, Switzerland 309-313.
A. Facco, A. Balabin, R. Paparella et al., Beam dynamics studies on the EURISOL driver accelerator. Proc. 24th linear accelerator, Conf. (LINAC’08), Victoria, Canada. 257–259 (2008).
Q. Chen, Z. Gao, Z.L. Zhu et al., Multi-frequency point supported LLRF front-end for CiADS wide-bandwidth application, Nucl. Sci. Tech. 31, 29 (2020). doi: 10.1007/s41365-020-0733-9http://doi.org/10.1007/s41365-020-0733-9
T. P. Wangler, RF Linear Accelerators. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 180 (2008).
F. Yan, S.L. Pei, H.P. Geng et al., ADS Injector I frequency choice at IHEP. Proc. 6th Int. Particle accelerator, Conf. (IPAC’15), Richmond, VA, USA. 265–268, (2013). doi: 10.18429/JACoW-IPAC2015-MOPWA061http://doi.org/10.18429/JACoW-IPAC2015-MOPWA061
S.N. Fu, S.X. Fang, X.L. Guan et al., Construction of a High-Current RFQ for ADS Study. Proc. The 23rd linear accelerator Conf. (LINAC’06, Knoxville, TN, USA). 165–167 (2006).
Z.H. Li, P. Cheng, H.P. Geng et al, Physics design of an accelerator for an accelerator-driven subcritical system. Phys. Rev. ST Accel. Beams 16, 080101 (2013). doi: 10.1103/PhysRevSTAB.16.080101http://doi.org/10.1103/PhysRevSTAB.16.080101
J.-L. Biarrotte, M. Novati, P. Pierini et al.. Beam dynamics studies for the fault tolerance assessment of the PDS-XADS linac design. Proc. 9th European Particle Accelerator Conf. (EPAC’04, Lucerne, Switzerland). 1282–1284 (2004).
R. L. Sheffield, Utilization of Accelerators for Transmutation and Energy Production. Proc. 46th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (HB’10), Morschach, Switzerland, 1–5 (2010).
G. Ciovati,P. Kneisel, J. Brawley et al., Superconducting prototype cavities for the spallation neutron source (SNS) project. Proc. 19th Particle Accelerator Conference, Chicago, Illinois. 484–486 (2001).
W. Hartung, C.C. Compton, T.L. Grimm et al., Status report on multi-cell superconducting cavity development for medium-velocity beams. Proc. 20th Particle Accelerator Conf. (PAC03), Portland, OR, USA, 1362–1364 (2003).
G. Bisoffi, G. Bassato, S. Canella et al., ALPI QWR and S-RFQ operating experience. Proc. 13th Int. Conf. RF Superconductivity (SRF’07), Beijing, China, 55–62 (2007).
R.E. Laxdal, B. Boussier, K. Fong et al., ISAC-II QWR cavity characterizations and investigations. Proc. 12th Int. Conf. RF Superconductivity (SRF’05), Ithaca, NY, USA 320–322. doi: 10.1016/j.physc.2006.03.095http://doi.org/10.1016/j.physc.2006.03.095
A. Facco, F. Scarpa, W.X. Lou et al., Constructionand testing of the Beta=0.31, 352 MHz superconducting half-wave resonator for the SPES project. Proc. 9th European Particle Accelerator Conf. (EPAC’04, Lucerne, Switzerland), 1012–1014 (2004).
A. Facco, F. Scarpa, D. Zenere et al., Low and intermediate-beta, 352 MHz superconducting half-wave resonators for high-power Hadron acceleration. Proc. 10th European Particle Accelerator Conf. (EPAC’06), Edinburgh, UK. 448–450 (2006).
M. P. Kelly, Overview of TEM-Class Superconducting Cavities for Proton and Ion Acceleration. Proc. The 23rd linear accelerator Conf. (LINAC’06, Knoxville, TN, USA).
R.C. Webber, T. khabiboulline, R. Madrak et al., First high gradient test results of a dressed 325 MHz superconducting single spoke resonator at Fermilab. Proc. 25th linear accelerator, Conf. (LINAC’10), Tsukuba, Japan. 821–823.
E. Zaplatin, W. Behr, H. Glueckler et al., FZJ HIPPI SC Triple-Spoke cavity. Proc. 23rd Particle Accelerator Conf. (PAC’09), Vancouver, Canada, 978–980 (2009).
Q. Wu, H.Y. Ma, Y. Yang et al., Status of intense permanent magnet proton source for China-accelerator driven subcritical system linac. Rev. Sci. Instrum. 87, 02B903 (2016). doi: 10.1063/1.4932314http://doi.org/10.1063/1.4932314
H.F. Ouyang, S.L. Pei, Physics design on C-ADS injector-I RFQ. Progress Report on China Nuclear Science & Technology, 2, 66–73 (2011). http://d.g.wanfangdata.com.cn/Conference_7737158.aspxhttp://d.g.wanfangdata.com.cn/Conference_7737158.aspx (in Chinese)
L. Young, J. Stoval, RFQGen User Guide, Los Alamos Scientific Lab. NM(USA), (2017).
T. M. Huang, Q. Ma, H. Lin et al., The improvement of the power coupler for CADS SC spoke cavities. Proc. 18th Int. Conf. RF Superconductivity (SRF’17), Lanzhou, China 220–222 (2017). doi: 10.18429/JACoW-SRF2017-MOPB070http://doi.org/10.18429/JACoW-SRF2017-MOPB070
F.S. He, Experience on spoke cavity development and future plan at IHEP. FREIA visit report, Uppsala, Sweden, May 22, 2017 https://indico.uu.se/event/392/attachments/628/782/20170522_Experience_on_spoke_cavity_development_and_future_plan_at_IHEP_Uppsala_visit.pdfhttps://indico.uu.se/event/392/attachments/628/782/20170522_Experience_on_spoke_cavity_development_and_future_plan_at_IHEP_Uppsala_visit.pdf
S.H. Liu, Z.J. Wang, H. Jia et al., Physics design of the CIADS 25MeV demo facility. Nucl. Instrum. Meth. A 843, 11–17 (2017). doi: 10.1016/j.nima.2016.10.055http://doi.org/10.1016/j.nima.2016.10.055
Y. He, Z.G. Wang, Z. Qin et al., Developemnt of accelerator driven advanced nuclear energy (ADANES) and nuclear fuel recycle. Proceedings of IPAC2019, Melbourne, Australia, 4389-4393 (2019). doi: 10.18429/JACoW-IPAC2019-TUYPLS2http://doi.org/10.18429/JACoW-IPAC2019-TUYPLS2
Q. Zhou, F.S. He, W.M. Pan et al., Development of a superconducting radio frequency double spoke cavity for CSNS. Nucl. Instrum. Meth. A, 988, 164873 (2021). doi: 10.1016/j.nima.2020.164873http://doi.org/10.1016/j.nima.2020.164873
E.M.F. Curado, C. Tsallis, Generalized statistical mechanics: connection with thermodynamics. J. Phys. A Math. Gen 24, L69-L72 (1991).
H. Geng, C. Meng, Y.F. Sui et al., Emittance Measurement with Wire Scanners at C-ADS Injector-I. Proc. 7th Int. Particle accelerator, 910–912, Conf. (IPAC’16), Busan, Korea. doi: 10.18429/JACoW-IPAC2016-MOPOY027http://doi.org/10.18429/JACoW-IPAC2016-MOPOY027
M. Borland, G. Decker, L. Emery et al., Lattice design challenges for fourth-generation storage-ring light sources. J. Synchrotron Rad. 21, 912–936 (2014). doi: 10.1107/S1600577514015203http://doi.org/10.1107/S1600577514015203
Y.L. Zhao, F. Yan, H.P. Geng et al., Transverse Twiss parameter measurement with space charge in CADS InjectorI. High-Power Laser and Particle Beams 30, 015101 (2018). doi: 10.11884/HPLPB201830.170261http://doi.org/10.11884/HPLPB201830.170261 (in Chinese)
D. Uriot and N. Pichoff, TraceWin, CEA, Saclay (2015), http://irfu.cea.fr/Sacm/logiciels/index3.phphttp://irfu.cea.fr/Sacm/logiciels/index3.php.
C. Meng, H.P. Geng, Z. Xue et al., Emittance measurement with double-slit method in CADS Injector-I. Proc. 7th Int. Particle accelerator, Conf. (IPAC’16), Busan, Korea. 922–924 (2016). doi: 10.18429/JACoW-IPAC2016-MOPOY031http://doi.org/10.18429/JACoW-IPAC2016-MOPOY031
H. Shi, H.F Ouyang, S.C. Wang et al., RF tuning and beam commissioning of CW RFQ for China-ADS Injector-I. Nucl. Sci. Tech, 29, 142 (2018). doi: 10.1007/s41365-018-0478-xhttp://doi.org/10.1007/s41365-018-0478-x
T. M. Huang, Q. Ma, X. Chen et al., High power input couplers for China ADS project. report in HPPA Mini-Workshop 2015, Lanzhou, China.
Conceptual physics design on the C-ADS accelerators, Internal design note, IHEP-CADS-Report/2012-01E (2012).
Jean-Luc Biarrotte and Didier Uriot, Dynamic compensation of an rf cavity failure in a superconducting linac. PRST-AB, 11, 072803 (2008).
F. Yan, L. Bian, J.S. Cao et al., Development of the C-ADS SRF Accelerator at IHEP. Proc. 18th Int. Conf. RF Superconductivity (SRF’17), Lanzhou, China. 19–23 (2017). doi: 10.18429/JACoW-SRF2017-MOXA07http://doi.org/10.18429/JACoW-SRF2017-MOXA07
0
浏览量
3
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构