1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Shanghai Synchrotron Radiation Facilitiy, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Shanghai 201204, China
lichen@zjlab.org.cn
Scan for full text
Huang-Kai Wu, Chen Li. A ROOT-based detector test system[J]. Nuclear Science and Techniques, 2021,32(10):115
Huang-Kai Wu, Chen Li. A ROOT-based detector test system[J]. Nuclear Science and Techniques, 2021,32(10):115
Huang-Kai Wu, Chen Li. A ROOT-based detector test system[J]. Nuclear Science and Techniques, 2021,32(10):115 DOI: 10.1007/s41365-021-00952-5.
Huang-Kai Wu, Chen Li. A ROOT-based detector test system[J]. Nuclear Science and Techniques, 2021,32(10):115 DOI: 10.1007/s41365-021-00952-5.
Most detectors for nuclear physics experiments are detector arrays composed of numerous units. Testing each detector unit is a major part of the research work on detector arrays. To save time and simplify the research process, a ROOT-based detector test system was designed for detector unit testing. The test system is a general purpose and expandable software system that can support most of the hardware devices in the market. Users can easily build a complete detector test system using the required hardware devices. The software is based on the ROOT framework and is operated on the Linux platform. The software of the test system consists of four parts: the controller, data acquisition(DAQ), high-voltage power supply, and online monitoring and analysis. In addition, a user-friendly graphical user interface (GUI) was designed for user convenience. Moreover, the online analysis function of the software can implement automatic peak searching and spectrum fitting for different radioactive sources, and the results under different conditions can be shown automatically. The completion of the test system could greatly simplify the development process of the detector.
Detector testData analysisROOT
S. Akkoyun, A. Algora, B. Alikhani et al., AGATA—Advanced GAmma Tracking Array. Nucl. Instrum. Method Phys. Res. A. 668, 26–58 (2012). doi: 10.1016/j.nima.2011.11.081http://doi.org/10.1016/j.nima.2011.11.081
F Camera,, H Utsunomiya,, V Varlamov,, et al., Gamma above the neutron threshold experiments at ELI-NP. Rom. Rep. Phys. 68: S539–S619 (2016).
P. Cardarelli, G. Paternò, G. Di Domenico et al., A gamma beam profile imager for ELI-NP Gamma Beam System. Nucl. Instrum. Method Phys. Res. A. 893, 109–116 (2018). doi: 10.1016/j.nima.2018.03.023http://doi.org/10.1016/j.nima.2018.03.023
H.C. Scraggs, C.J. Pearson, G. Hackman et al., TIGRESS highly-segmented high-purity germanium clover detector. Nucl. Instrum. Method Phys. Res. A. 543, 431–440 (2005). doi: 10.1016/j.nima.2004.12.012http://doi.org/10.1016/j.nima.2004.12.012
M. Descovich, I.Y. Lee, P. Fallon et al., In-beam measurement of the position resolution of a highly segmented coaxial germanium detector. Nucl. Instrum. Method Phys. Res. A. 553, 535–542 (2005). doi: 10.1016/j.nima.2005.07.016http://doi.org/10.1016/j.nima.2005.07.016
K. Starosta, C. Vaman, D. Miller et al., Digital Data Acquisition System for experiments with segmented detectors at National Superconducting Cyclotron Laboratory. Nucl. Instrum. Method Phys. Res. A. 610, 700–709 (2012). doi: 10.1016/j.nima.2009.09.016http://doi.org/10.1016/j.nima.2009.09.016
P.-A. Söderström, F. Recchia, J. Nyberg et al., Interaction position resolution simulations and in-beam measurements of the AGATA HPGe detectors. Nucl. Instrum. Method Phys. Res. A., 638: 96–109 (2011). doi: 10.1016/j.nima.2011.02.089http://doi.org/10.1016/j.nima.2011.02.089
T.A. Bredeweg, M.M. Fowler, J.A. Becker et al., Simultaneous measurement of and cross sections with the DANCE 4π BaF2 array. Nucl. Instrum. Method Phys. Res. A. 261, 986–989 (2007). doi: 10.1016/j.nimb.2007.04.226http://doi.org/10.1016/j.nimb.2007.04.226
M. Jandel, T.A. Bredeweg, A. Couture et al., GEANT4 simulations of the DANCE array. Nucl. Instrum. Method Phys. Res. B. 261, 1117–1121 (2007). doi: 10.1016/j.nimb.2007.04.252http://doi.org/10.1016/j.nimb.2007.04.252
C. Guerrero, U. Abbondanno, G. Aerts et al., The n_TOF Total Absorption Calorimeter for neutron capture measurements at CERN. Nucl. Instrum. Method Phys. Res. A. 608, 424–433 (2009). doi: 10.1016/j.nima.2009.07.025http://doi.org/10.1016/j.nima.2009.07.025
J.F. Perello, S. Almaraz-Calderon, B.W. Asher et al., Characterization of the CATRiNA neutron detector system. Nucl. Instrum. Method Phys. Res. A. 930, 196–202 (2019). doi: 10.1016/j.nima.2019.03.084http://doi.org/10.1016/j.nima.2019.03.084
L. Bardelli, M. Bini, G. Casini et al., Progresses in the pulse shape identification with silicon detectors within the FAZIA Collaboration. Nucl. Instrum. Method Phys. Res. A. 654, 272–278 (2011). doi: 10.1016/j.nima.2011.06.063http://doi.org/10.1016/j.nima.2011.06.063
M. Pfützner, M. Karny, L.V. Grigorenko et al., Radioactive decays at limits of nuclear stability. Rev. Mod. Phys. 84: 567–619 (2011). doi: 10.1103/RevModPhys.84.567http://doi.org/10.1103/RevModPhys.84.567
N. Le Neindre, R. Bougault, S. Barlini et al., Comparison of charged particle identification using pulse shape discrimination and ΔE-E methods between front and rear side injection in silicon detectors. Nucl. Instrum. Method Phys. Res. A. 701: 145–152 (2013). doi: 10.1016/j.nima.2012.11.005http://doi.org/10.1016/j.nima.2012.11.005
J.G. Guerra, J.G. Rubiano, G. Winter et al., Modeling of a HPGe well detector using PENELOPE for the calculation of full energy peak efficiencies for environmental samples. Nucl. Instrum. Method Phys. Res. A. 908, 206–214 (2018). doi: 10.1016/j.nima.2018.08.048http://doi.org/10.1016/j.nima.2018.08.048
Z.-Y. Li, Y.-M. Zhang, G.-F. Cao et al., Event vertex and time reconstruction in large-volume liquid scintillator detectors. Nucl. Sci. Tech. 32, 49 (2021). doi: 10.1007/s41365-021-00885-zhttp://doi.org/10.1007/s41365-021-00885-z
K.L. Giboni, P. Juyal, E. Aprile et al., A LN2-based cooling system for a next-generation liquid xenon dark matter detector. Nucl. Sci. Tech. 31, 76 (2020). doi: 10.1007/s41365-020-00786-7http://doi.org/10.1007/s41365-020-00786-7
P. Juyal, K.-L. Giboni, X.-D. Ji et al ., On proportional scintillation in very large liquid xenon detectors. Nucl. Sci. Tech. 31, 93 (2020). doi: 10.1007/s41365-020-00797-4http://doi.org/10.1007/s41365-020-00797-4
H. Dong, D.-Q. Fang, C. Li, Study on the performance of a large-size CsI detector for high energy γ-rays. Nucl. Sci. Tech. 29, 7 (2018). doi: 10.1007/s41365-017-0345-1http://doi.org/10.1007/s41365-017-0345-1
M. Battaglia, D. Bisello, D. Contarato et al., A DAQ system for pixel detectors R D. Nucl. Instrum. Method Phys. Res. A. 611, 105–110 (2009). doi: 10.1016/j.nima.2009.09.008http://doi.org/10.1016/j.nima.2009.09.008
W.-X. Zhou, Y.-Y. Wang, L.-M. Pan, Design of a NIM-based DAQ system. Nucl. Sci. Tech. 28, 139 (2017). doi: 10.1007/s41365-017-0296-6http://doi.org/10.1007/s41365-017-0296-6
H.Y. Wu, Z.H. Li, H. Tan et al., A general-purpose digital data acquisition system (GDDAQ) at Peking University. Nucl. Instrum. Method Phys. Res. A. 975, 164–200 (2020). doi: 10.1016/j.nima.2020.164200http://doi.org/10.1016/j.nima.2020.164200
A. Balzer, M. Fußling, M. Gajdus, et al., A DAQ system for pixel detectors R&D. Nucl. Instrum. Methods A . 611,, 105–110 (2009). doi: 10.1016/j.nima.2009.09.008http://doi.org/10.1016/j.nima.2009.09.008
CERN ROOT, https://root.cern.ch/https://root.cern.ch/
CAEN ADC V785, https://www.caen.it/products/v785/https://www.caen.it/products/v785/
Mesytec MADC-32, http://www.mesytec.com/products/datasheets/MADC-32.pdfhttp://www.mesytec.com/products/datasheets/MADC-32.pdf
CAEN Digitizers, https://www.caen.it/sections/digitizer-families/https://www.caen.it/sections/digitizer-families/
Mesytec MSCF-16, http://www.mesytec.com/products/datasheets/MSCF16-F-V.pdfhttp://www.mesytec.com/products/datasheets/MSCF16-F-V.pdf
CAEN DT5533, https://www.caen.it/products/dt5533e/https://www.caen.it/products/dt5533e/
NuDat2.8, https://www.nndc.bnl.gov/nudat2/https://www.nndc.bnl.gov/nudat2/
0
浏览量
5
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构