1.School of Physics, Nanjing University, Nanjing 210093, China
2.School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China
cxu@nju.edu.cn
Scan for full text
Jie Liu, Chao Gao, Niu Wan, 等. Basic quantities of the Equation of State in isospin asymmetric nuclear matter[J]. Nuclear Science and Techniques, 2021,32(11):117
Jie Liu, Chao Gao, Niu Wan, et al. Basic quantities of the Equation of State in isospin asymmetric nuclear matter[J]. Nuclear Science and Techniques, 2021,32(11):117
Jie Liu, Chao Gao, Niu Wan, 等. Basic quantities of the Equation of State in isospin asymmetric nuclear matter[J]. Nuclear Science and Techniques, 2021,32(11):117 DOI: 10.1007/s41365-021-00955-2.
Jie Liu, Chao Gao, Niu Wan, et al. Basic quantities of the Equation of State in isospin asymmetric nuclear matter[J]. Nuclear Science and Techniques, 2021,32(11):117 DOI: 10.1007/s41365-021-00955-2.
Based on the Hugenholtz-Van Hove theorem, six basic quantities of the EoS in isospin asymmetric nuclear matter are expressed in terms of the nucleon kinetic energy ,t,(,k,), the isospin symmetric and asymmetric parts of the single-nucleon potentials ,U,0,(,ρ,k,) and ,U,sym,i,(,ρ,k,). The six basic quantities include the quadratic symmetry energy ,E,sym,2,(,ρ,), the quartic symmetry energy ,E,sym,4,(,ρ,), their corresponding density slopes ,L,2,(,ρ,) and ,L,4,(,ρ,), and the incompressibility coefficients ,K,2,(,ρ,) and ,K,4,(,ρ,). By using four types of well-known effective nucleon-nucleon interaction models, namely the BGBD, MDI, Skyrme, and Gogny forces, the density- and isospin-dependent properties of these basic quantities are systematically calculated and their values at the saturation density ,ρ,0, are explicitly given. The contributions to these quantities from ,t,(,k,),U,0,(,ρ,k,), and ,U,sym,i,(,ρ,k,) are also analyzed at the normal nuclear density ,ρ,0,. It is clearly shown that the first-order asymmetric term ,U,sym,1,(,ρ,k,) (also known as the symmetry potential in the Lane potential) plays a vital role in determining the density dependence of the quadratic symmetry energy ,E,sym,2,(,ρ,). It is also shown that the contributions from the high-order asymmetric parts of the single-nucleon potentials (,U,sym,i,(,ρ,k,) with ,i,>,1) cannot be neglected in the calculations of the other five basic quantities. Moreover, by analyzing the properties of asymmetric nuclear matter at the exact saturation density ,ρ,sat,(,δ,), the corresponding quadratic incompressibility coefficient is found to have a simple empirical relation ,K,sat,2,=,K,2,(,ρ,0,)-4.14 ,L,2,(,ρ,0,).
Equation of stateSymmetry energyHVH theoremSingle-nucleon potential
Danielewicz P., Lacey R., and Lynch W. G., Determination of the equation of state of dense matter. Science 298, 1592 (2002). doi: 10.1126/science.1078070http://doi.org/10.1126/science.1078070
Lattimer J. M. and Prakash M., The physics of neutron stars. Science 304, 536 (2004) doi: 10.1126/science.1090720http://doi.org/10.1126/science.1090720
Baldo M. and Burgio G. F., The nuclear symmetry energy. Prog. Part. Nucl. Phys. 91, 203 (2016). doi: 10.1016/j.ppnp.2016.06.006http://doi.org/10.1016/j.ppnp.2016.06.006
Jiang C.J., Qiang Y., Guan D.W. et al., From finite nuclei to neutron stars: the essential role of high-order density dependence in effective forces. Chin. Phys. Lett. 38, 052101 (2021). doi: 10.1088/0256-307X/38/5/052101http://doi.org/10.1088/0256-307X/38/5/052101
Ren X.L., Chen C.X., Li K.W. et al., Relativistic chiral description of the 1S0 nucleon-nucleon scattering. Chin. Phys. Lett. 38 062101 (2021). doi: 10.1088/0256-307X/38/6/062101http://doi.org/10.1088/0256-307X/38/6/062101
Bender M., Heenen P. H., Reinhard P. G., Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121 (2003). doi: 10.1103/RevModPhys.75.121http://doi.org/10.1103/RevModPhys.75.121
Xu J., Constraining isovector nuclear interactions with giant dipole resonance and neutron skin in 208Pb from a Bayesian approach. Chin. Phys. Lett. 38 042101 (2021). doi: 10.1088/0256-307X/38/4/042101http://doi.org/10.1088/0256-307X/38/4/042101
Yu H., Fang D. Q., Ma Y. G., Investigation of the symmetry energy of nuclear matter using isospin-dependent quantum molecular dynamics. Nucl. Sci. Tech. 31, 61 (2020). doi: 10.1007/s41365-020-00766-xhttp://doi.org/10.1007/s41365-020-00766-x
Dong J. M., Zuo W., Gu J. Z., Origin of symmetry energy in finite nuclei and density dependence of nuclear matter symmetry energy from measured α-decay energies, Phys. Rev. C 87, 014303 (2013). doi: 10.1103/PhysRevC.87.014303http://doi.org/10.1103/PhysRevC.87.014303
Chen L.W., Ko C.M., Li B.A. et al., Probing isospin- and momentum-dependent nuclear effective interactions in neutron-rich matter. Eur. Phys. J. A 50, 29 (2014). doi: 10.1140/epja/i2014-14029-6http://doi.org/10.1140/epja/i2014-14029-6
Li O., Li Z.X., Wu X.Z. et al., Disentangling the effects of thickness of the neutron skin and symmetry potential in nucleon induced reactions on Sn isotopes. Chin. Phys. Lett. 26, 052501 (2009). doi: 10.1088/0256-307X/26/5/052501http://doi.org/10.1088/0256-307X/26/5/052501
Wei G.F., Zhi Q.J., Cao X.W. et al., Examination of an isospin-dependent single-nucleon momentum distribution for isospin-asymmetric nuclear matter in heavy-ion collisions. Nucl. Sci. Tech. 31, 71 (2020). doi: 10.1007/s41365-020-00779-6http://doi.org/10.1007/s41365-020-00779-6
Coló G., Garg U., and Sagawa H., Symmetry energy from the nuclear collective motion: constraints from dipole, quadrupole, monopole and spin-dipole resonances. Eur. Phys. J. A 50, 26 (2014). doi: 10.1140/epja/i2014-14026-9http://doi.org/10.1140/epja/i2014-14026-9
Xu J., Chen L.W., Li B.A. et al., Locating the inner edge of the neutron star crust using terrestrial nuclear laboratory data. Phys. Rev. C 79, 035802 (2009). doi: 10.1103/PhysRevC.79.035802http://doi.org/10.1103/PhysRevC.79.035802
Li B.A., Krastev P.G., Wen D.H. et al., Towards understanding astrophysical effects of nuclear symmetry energy. Eur. Phys. J. A 55, 23 (2019). doi: 10.1140/epja/i2019-12780-8http://doi.org/10.1140/epja/i2019-12780-8
Xu Y., Zhi Q.J., Wang Y.B. et al., Nucleonic 1S0 superfluidity induced by a soft pion in neutron star matter with antikaon condensations. Chin. Phys. Lett. 36 061301 (2019). doi: 10.1088/0256-307X/36/6/061301http://doi.org/10.1088/0256-307X/36/6/061301
Li B. A. and Zhang N. B., Astrophysical constraints on a parametric equation of state for neutron-rich nucleonic matter. Nucl. Sci. Tech. 29, 178 (2018). doi: 10.1007/s41365-018-0515-9http://doi.org/10.1007/s41365-018-0515-9
Li B.A., Chen L.W., Ko C.M., Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rep. 464, 113 (2008). doi: 10.1016/j.physrep.2008.04.005http://doi.org/10.1016/j.physrep.2008.04.005
Blaizot J. P., Nuclear compressibilities. Phys. Rep. 64 171 (1980). doi: 10.1016/0370-1573(80)90001-0http://doi.org/10.1016/0370-1573(80)90001-0
Youngblood D. H., Clark H. L., and Lui Y. W., Incompressibility of nuclear matter from the giant monopole resonance. Phys. Rev. Lett. 82, 691 (1999). doi: 10.1103/PhysRevLett.82.691http://doi.org/10.1103/PhysRevLett.82.691
Shlomo S., Kolomietz V. M., and Colò G, Deducing the nuclear-matter incompressibility coefficient from data on isoscalar compression modes. Eur. Phys. J. A 30, 23 (2006). doi: 10.1140/epja/i2006-10100-3http://doi.org/10.1140/epja/i2006-10100-3
Zhang N.B., Li B.A., and Xu J., Combined constraints on the equation of state of dense neutron-rich matter from terrestrial nuclear experiments and observations of neutron stars. Astrophys. J. 859, 90 (2018). doi: 10.3847/1538-4357/aac027http://doi.org/10.3847/1538-4357/aac027
Xie W.J. and Li B.A., Bayesian inference of high-density nuclear symmetry energy from radii of canonical neutron stars. Astrophys. J. 883, 174 (2019). doi: 10.3847/1538-4357/ab3f37http://doi.org/10.3847/1538-4357/ab3f37
Cai B.J. and Chen L. W., Constraints on the skewness coefficient of symmetric nuclear matter within the nonlinear relativistic mean field model. Nucl. Sci. Tech. 28 185 (2017). doi: 10.1007/s41365-017-0329-1http://doi.org/10.1007/s41365-017-0329-1
Li B.A. and Xiao H., Constraining the neutron-proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density. Phys. Lett. B 727, 276 (2013). doi: 10.1016/j.physletb.2013.10.006http://doi.org/10.1016/j.physletb.2013.10.006
Oertel M., Hempel M., Klähn T. et al., Equations of state for supernovae and compact stars. Rev. Mod. Phys. 89, 015007 (2017). doi: 10.1103/RevModPhys.89.015007http://doi.org/10.1103/RevModPhys.89.015007
Garg U., Li T., Okumura S. et al., The giant monopole resonance in the Sn isotopes: Why is Tin so fluffy? Nucl. Phys. A 788, 36-43 (2007). doi: 10.1016/j.nuclphysa.2007.01.046http://doi.org/10.1016/j.nuclphysa.2007.01.046
Li T., Garg U., Liu Y. et al., Isotopic dependence of the giant monopole resonance in the even-A 112-124Sn isotopes and the asymmetry term in nuclear incompressibility. Phys. Rev. Lett. 99, 162503 (2007). doi: 10.1103/PhysRevLett.99.162503http://doi.org/10.1103/PhysRevLett.99.162503
Lopez-Quelle M., Marcos S., Niembro R. et al., Asymmetric nuclear matter in the relativistic approach. Nucl. Phys. A 483, 479 (1988). doi: 10.1016/0375-9474(88)90080-2http://doi.org/10.1016/0375-9474(88)90080-2
Xiao Z.G., Li B.A., Chen L.W. et al., Circumstantial evidence for a soft nuclear symmetry energy at suprasaturation densities. Phys. Rev. Lett. 102, 062502 (2009). doi: 10.1103/PhysRevLett.102.062502http://doi.org/10.1103/PhysRevLett.102.062502
Chen L.W., Ko C.M., and Li B.A., Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models. Phys. Rev. C 76, 054316 (2007). doi: 10.1103/PhysRevC.76.054316http://doi.org/10.1103/PhysRevC.76.054316
Xu C. and Ren Z. Z., Effect of short-range and tensor force correlations on high-density behavior of symmetry energy. Chin. Phys. Lett. 29, 122102 (2012). doi: 10.1088/0256-307X/29/12/122102http://doi.org/10.1088/0256-307X/29/12/122102
Zhang N.B., Cai B.J., Li B.A. et al., How tightly is the nuclear symmetry energy constrained by a unitary Fermi gas? Nucl. Sci. Tech. 28, 181 (2017). doi: 10.1007/s41365-017-0336-2http://doi.org/10.1007/s41365-017-0336-2
Pu J., Zhang Z., and Chen L. W., Nuclear matter fourth-order symmetry energy in nonrelativistic mean-field models. Phys. Rev. C 96, 054311 (2017). doi: 10.1103/PhysRevC.96.054311http://doi.org/10.1103/PhysRevC.96.054311
Liu Z.W., Qian Z., Xing R.Y. et al., Nuclear fourth-order symmetry energy and its effects on neutron star properties in the relativistic Hartree-Fock theory. Phys. Rev. C 97, 025801 (2018). doi: 10.1103/PhysRevC.97.025801http://doi.org/10.1103/PhysRevC.97.025801
Dong J.M., Zuo W., and Gu J.Z., The fourth-order symmetry energy of finite nuclei. Phys. Atom. Nucl. 81, 283 (2018). doi: 10.1134/S1063778818030109http://doi.org/10.1134/S1063778818030109
Boquera C. G., Centelles M., Viñas X. et al., Higher-order symmetry energy and neutron star core-crust transition with Gogny forces. Phys. Rev. C 96, 065806 (2017). doi: 10.1103/PhysRevC.96.065806http://doi.org/10.1103/PhysRevC.96.065806
Hugenholtz N. M. and Van Hove L., A theorem on the single particle energy in a Fermi gas with interaction. Physica 24, 363 (1958). doi: 10.1016/S0031-8914(58)95281-9http://doi.org/10.1016/S0031-8914(58)95281-9
Wan N., Xu C., Ren Z.Z., α-Decay half-life screened by electrons. Nucl. Sci. Tech. 27, 149 (2016). doi: 10.1007/s41365-016-0150-2http://doi.org/10.1007/s41365-016-0150-2
Wan N., Xu C., Ren Z.Z. et al., Constraints on both the symmetry energy E2(ρ0) and its density slope L2(ρ0) by cluster radioactivity. Phys. Rev. C 96, 044331 (2017). doi: 10.1103/PhysRevC.96.044331http://doi.org/10.1103/PhysRevC.96.044331
Xu C., Li B.A., Chen L.W. et al., Analytical relations between nuclear symmetry energy and single-nucleon potentials in isospin asymmetric nuclear matter. Nucl. Phys. A 865, 1 (2011). doi: 10.1016/j.nuclphysa.2011.06.027http://doi.org/10.1016/j.nuclphysa.2011.06.027
Xu C., Li B.A., and Chen L. W., Attempt to link the neutron skin thickness of 208Pb with the symmetry energy through cluster radioactivity. Phys. Rev. C 90, 064310 (2014). doi: 10.1103/PhysRevC.90.064310http://doi.org/10.1103/PhysRevC.90.064310
Ji M. and Xu C., Quantum anti-Zeno effect in nuclear β decay. Chin. Phys. Lett. 38, 032301 (2021). doi: 10.1088/0256-307X/38/3/032301http://doi.org/10.1088/0256-307X/38/3/032301
Gale C., Bertsch G., Das Gupta S., Heavy-ion collision theory with momentum-dependent interactions. Phys. Rev. C 35, 1666 (1987). doi: 10.1103/PhysRevC.35.1666http://doi.org/10.1103/PhysRevC.35.1666
Bombaci I. and Lombardo U., Asymmetric nuclear matter equation of state. Phys. Rev. C 44, 1892 (1991). doi: 10.1103/PhysRevC.44.1892http://doi.org/10.1103/PhysRevC.44.1892
Rizzo J., Colonna M., Di Toro M. et al., Transport properties of isospin effective mass splitting. Nucl. Phys. A 732, 202 (2004). doi: 10.1016/j.nuclphysa.2003.11.057http://doi.org/10.1016/j.nuclphysa.2003.11.057
Das C.B., Das Gupta S., Gale C. et al., Momentum dependence of symmetry potential in asymmetric nuclear matter for transport model calculations. Phys. Rev. C 67, 034611 (2003). doi: 10.1103/PhysRevC.67.034611http://doi.org/10.1103/PhysRevC.67.034611
Li B.A., Das C.B., Das Gupta S. et al., Effects of momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei. Nucl. Phys. A 735, 563 (2004). doi: 10.1016/j.nuclphysa.2004.02.016http://doi.org/10.1016/j.nuclphysa.2004.02.016
Li B.A., Das C.B., Das Gupta S. et al., Momentum dependence of the symmetry potential and nuclear reactions induced by neutron-rich nuclei at RIA. Phys. Rev. C 69, 011603(R) (2004) doi: 10.1103/PhysRevC.69.011603http://doi.org/10.1103/PhysRevC.69.011603
Chen L.W., Ko C.M., Li B. A., Determination of the stiffness of the nuclear symmetry energy from isospin diffusion. Phys. Rev. Lett. 94, 032701 (2005). doi: 10.1103/PhysRevLett.94.032701http://doi.org/10.1103/PhysRevLett.94.032701
Feng Z. Q., Momentum dependence of the symmetry potential and its influence on nuclear reactions. Phys. Rev. C 84, 024610 (2011). doi: 10.1103/PhysRevC.84.024610http://doi.org/10.1103/PhysRevC.84.024610
Feng Z. Q., Nuclear in-medium effects and collective flows in heavy-ion collisions at intermediate energies. Phys. Rev. C 85, 014604 (2012). doi: 10.1103/PhysRevC.85.014604http://doi.org/10.1103/PhysRevC.85.014604
Zhang F. and Su J., Probing neutron-proton effective mass splitting using nuclear stopping and isospin mix in heavy-ion collisions in GeV energy region. Nucl. Sci. Tech. 31, 77 (2020). doi: 10.1007/s41365-020-00787-6http://doi.org/10.1007/s41365-020-00787-6
Skyrme T.H.R., The effective nuclear potential. Nucl. Phys. 9, 615 (1959). doi: 10.1016/0029-5582(58)90345-6http://doi.org/10.1016/0029-5582(58)90345-6
Wang Y.Z., Li Y., Qi C. et al., Pairing effects on bubble nuclei. Chin. Phys. Lett. 36, 032101 (2019). doi: 10.1088/0256-307X/36/3/032101http://doi.org/10.1088/0256-307X/36/3/032101
Vautherin D. and Brink D. M., Hartree-Fock calculations with Skyrme’s interaction. I. Spherical nuclei. Phys. Rev. C 5, 626 (2012) doi: 10.1103/PhysRevC.5.626http://doi.org/10.1103/PhysRevC.5.626
Brink D.M. and Boeker E., Effective interactions for Hartree-Fock calculations. Nucl. Phys. A 91, 1 (1967). doi: 10.1016/0375-9474(67)90446-0http://doi.org/10.1016/0375-9474(67)90446-0
Gogny D. and Padjen R., The propagation and damping of the collective modes in nuclear matter. Nucl. Phys. A 293, 365 (1977). doi: 10.1016/0375-9474(77)90104-Xhttp://doi.org/10.1016/0375-9474(77)90104-X
Dechargé J., Girod M., and Gogny D., Self consistent calculations and quadrupole moments of even Sm isotopes. Phys. Lett. B 55, 361 (1975). doi: 10.1016/0370-2693(75)90359-7http://doi.org/10.1016/0370-2693(75)90359-7
Boguta J. and Bodmoer A. R., Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. A 292, 413 (1977). doi: 10.1016/0375-9474(77)90626-1http://doi.org/10.1016/0375-9474(77)90626-1
Ouyang F., Liu B.B., and Chen W., Nuclear symmetry energy from a relativistic mean field theory. Chin. Phys. Lett. 30, 092101 (2013). doi: 10.1088/0256-307X/30/9/092101http://doi.org/10.1088/0256-307X/30/9/092101
Dutra M., Lourenço O., Sá Martins J. S. et al., Skyrme interaction and nuclear matter constraints. Phys. Rev. C 85, 035201 (2012). doi: 10.1103/PhysRevC.85.035201http://doi.org/10.1103/PhysRevC.85.035201
Steiner A.W., Prakash M., Lattimer J.M. et al., Isospin asymmetry in nuclei and neutron stars. Phys. Rep. 411, 325 (2005). doi: 10.1016/j.physrep.2005.02.004http://doi.org/10.1016/j.physrep.2005.02.004
Agrawal B.K., Dhiman S.K., Kumar R., Exploring the extended density-dependent Skyrme effective forces for normal and isospin-rich nuclei to neutron stars. Phys. Rev. C 73, 034319 (2006). doi: 10.1103/PhysRevC.73.034319http://doi.org/10.1103/PhysRevC.73.034319
Agrawal B.K., Shlomo S., Au V. K., Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach. Phys. Rev. C 72, 014310 (2005). doi: 10.1103/PhysRevC.72.014310http://doi.org/10.1103/PhysRevC.72.014310
Cao L.G., Lombardo U., Shen C. W. et al., From Brueckner approach to Skyrme-type energy density functional. Phys. Rev. C 73, 014313 (2006). doi: 10.1103/PhysRevC.73.014313http://doi.org/10.1103/PhysRevC.73.014313
Chen L.W., Ko C.M., Li B.A. et al., Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei. Phys. Rev. C 82, 024321 (2010). doi: 10.1103/PhysRevC.82.024321http://doi.org/10.1103/PhysRevC.82.024321
Rashdan M., A Skyrme parametrization based on nuclear matter BHF calculations. Mod. Phys. Lett. A 15, 1287 (2000). doi: 10.1142/S0217732300001663http://doi.org/10.1142/S0217732300001663
Tondeur F., Brack M., Farine M. et al., Static nuclear properties and the parametrisation of Skyrme forces. Nucl. Phys. A 420, 297 (1984). doi: 10.1016/0375-9474(84)90444-5http://doi.org/10.1016/0375-9474(84)90444-5
Brown B.A., Shen G., Hillhouse G.C. et al., Neutron skin deduced from antiprotonic atom data. Phys. Rev. C 76, 034305 (2007). doi: 10.1103/PhysRevC.76.034305http://doi.org/10.1103/PhysRevC.76.034305
Guichon P.A.M., Matevosyan H.H., Sandulescu N. et al., Physical origin of density dependent forces of Skyrme type within the quark meson coupling model. Nucl. Phys. A 772, 1 (2006). doi: 10.1016/j.nuclphysa.2006.04.002http://doi.org/10.1016/j.nuclphysa.2006.04.002
Klüpfel P., Reinhard P.-G., Bürvenich T. J. et al., Variations on a theme by Skyrme: A systematic study of adjustments of model parameters. Phys. Rev. C 79, 034310 (2009). doi: 10.1103/PhysRevC.79.034310http://doi.org/10.1103/PhysRevC.79.034310
Berger J. F., Girod M., Gogny D., Time-dependent quantum collective dynamics applied to nuclear fission. Comp. Phys. Comm. 63, 365 (1991). doi: 10.1016/0010-4655(91)90263-Khttp://doi.org/10.1016/0010-4655(91)90263-K
Chappert F., Girod M., Hilaire S., Towards a new Gogny force parameterization: Impact of the neutron matter equation of state. Phys. Lett. B 668, 420 (2008). doi: 10.1016/j.physletb.2008.09.017http://doi.org/10.1016/j.physletb.2008.09.017
Goriely S., Hilaire S., Girod M. et al., First Gogny-Hartree-Fock-Bogoliubov nuclear mass model. Phys. Rev. Lett. 102, 242501 (2009). doi: 10.1103/PhysRevLett.102.242501http://doi.org/10.1103/PhysRevLett.102.242501
Lane A. M., Isobaric spin dependence of the optical potential and quasi-elastic (p, n) reactions. Nucl. Phys. 35, 676 (1962). doi: 10.1016/0029-5582(62)90153-0http://doi.org/10.1016/0029-5582(62)90153-0
Chen L. W., Cai B.J., Ko C.M. et al., Higher-order effects on the incompressibility of isospin asymmetric nuclear matter. Phys. Rev. C 80, 014322 (2009). doi: 10.1103/PhysRevC.80.014322http://doi.org/10.1103/PhysRevC.80.014322
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构