Sensitivity of the area method with mono isotopic fission chambers to reactivity changes in subcritical nuclear reactors
NUCLEAR ENERGY SCIENCE AND ENGINEERING|Updated:2021-11-29
|
Sensitivity of the area method with mono isotopic fission chambers to reactivity changes in subcritical nuclear reactors
Sensitivity of the area method with mono isotopic fission chambers to reactivity changes in subcritical nuclear reactors
Nuclear Science and Techniques2021年32卷第10期 文章编号:112
Affiliations:
1.AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-0591 Kraków, Poland
Author bio:
Grazyna.Domanska@fis.agh.edu.pl
Funds:
Polish Ministry of Science and Higher Education;PL Grid Infrastructure available at Academic Computer Center CYFRONET AGH;AGH-University of Science and Technology, Cracow, Poland
Jerzy A. Janczyszyn, Grażyna Domańska, Przemysław Stanisz. Sensitivity of the area method with mono isotopic fission chambers to reactivity changes in subcritical nuclear reactors[J]. Nuclear Science and Techniques, 2021,32(10):112
Jerzy A. Janczyszyn, Grażyna Domańska, Przemysław Stanisz. Sensitivity of the area method with mono isotopic fission chambers to reactivity changes in subcritical nuclear reactors[J]. Nuclear Science and Techniques, 2021,32(10):112
Jerzy A. Janczyszyn, Grażyna Domańska, Przemysław Stanisz. Sensitivity of the area method with mono isotopic fission chambers to reactivity changes in subcritical nuclear reactors[J]. Nuclear Science and Techniques, 2021,32(10):112 DOI: 10.1007/s41365-021-00957-0.
Jerzy A. Janczyszyn, Grażyna Domańska, Przemysław Stanisz. Sensitivity of the area method with mono isotopic fission chambers to reactivity changes in subcritical nuclear reactors[J]. Nuclear Science and Techniques, 2021,32(10):112 DOI: 10.1007/s41365-021-00957-0.
Sensitivity of the area method with mono isotopic fission chambers to reactivity changes in subcritical nuclear reactors
摘要
Abstract
High-level waste is an important safety issue in the development of nuclear power. A proposed solution is the transmutation of waste in fast reactors. The exclusion of the risk of supercriticality by using subcritical reactors is currently under development. Controlling the subcriticality level in such reactors presents difficulties. A problem is posed by the so-called space effect observed when using in reactors many neutron detectors in different locations of the core and reflector. Reactivity obtained from measurements, for example, by the Sjöstrand method, differs by nonnegligible values. Numerical corrections can partially improve this situation. The use of a monoisotopic fission chamber set, designed for a given reactor, when each chamber is intended for a specific position in the system, can improve the situation. A question arises about the sensitivity of the results to reactivity changes. This issue is analyzed by computer simulation for possible fissionable and fissile nuclides for the total range of control rod insertion, changes in reactor fuel enrichment, and fuel temperature. The tested sensitivity was satisfactory at most levels from several dozen to several hundred pcm. A case study was conducted using the VENUS-F core model.
Z-X. Fang., M. Yu, Y-G. Huang et al., Theoretical analysis of long-lived radioactive waste in pressurized water reactor. Nucl. Sci. Tech. 32, 72 (2021). doi: 10.1007/s41365-021-00911-0http://doi.org/10.1007/s41365-021-00911-0
Amer A. Al Qaaod, V. Gulik, 226Ra irradiation to produce 225Ac and 213Bi in an accelerator-driven system reactor. Nucl. Sci. Tech. 31, 44 (2020). doi: 10.1007/s41365-020-00753-2http://doi.org/10.1007/s41365-020-00753-2
Z-Q. Liu, Z-L. Zhao, Y-W. Yang et al., Development and validation of depletion code system IMPC-Burnup for ADS. Nucl. Sci. Tech. 30, 44 (2019). doi: 10.1007/s41365-019-0560-zhttp://doi.org/10.1007/s41365-019-0560-z
H-Y. Meng, Y-W. Yang, Z-L. Zhao et al., Physical studies of minor actinide transmutation in the accelerator-driven subcritical system. Nucl. Sci. Tech. 30, 914 (2019). doi: 10.1007/s41365-019-0623-1http://doi.org/10.1007/s41365-019-0623-1
Z-L. Zhao, Y-W. Yang, H-Y. Meng et al., Preparation and verification of mixed high-energy neutron cross-section library for ADS. Nucl. Sci. Tech. 29, 140 (2018) doi: 10.1007/s41365-018-0487-9http://doi.org/10.1007/s41365-018-0487-9
A. Talamo, Y. Gohar, Y. Cao et al., Impact of the neutron detector choice on bell and glasstone spatial correction factor for subcriticality measurement. Nucl. Instrum. Meth A. 668, 71-82 (2012). doi: 10.1016/j.nima.2011.11.072http://doi.org/10.1016/j.nima.2011.11.072
N. Marie, G. Lehaut, J.-L. Lecouey et al., Reactivity monitoring using the area method for the subcritical venus-f core within the framework of the freya project. pp. 1-10 (2013). https://arxiv.org/ftp/arxiv/papers/1306/1306.1063.pdfhttps://arxiv.org/ftp/arxiv/papers/1306/1306.1063.pdf
J. Cetnar, G. Domańska, P. Gajda, J. Janczyszyn, Assessment of the control rods shadow effect in the VENUS-F core. NUKLEONIKA. 59 (4), 137-143 (2014). doi: 10.2478/nuka-2014-0020http://doi.org/10.2478/nuka-2014-0020
J. Janczyszyn, G. Domańska, P. Stanisz, Fission chambers for space effect reduction in the application of the area method. A new approach. NUKLEONIKA. 65 (3), 161-166, (2020). doi: 10.2478/nuka-2020-0026http://doi.org/10.2478/nuka-2020-0026
N. G. Sjöstrand, Measurements on a subcritical reactor using a pulsed neutron source. Arkiv för fysik. Band 11 nr 13, 233-246 (1956).
J. Janczyszyn, On the Sjöstrand method of reactivity measurement. Ann. Nucl. Energy 60, 374–376 (2013). doi: 10.1016/j.anucene.2013.05.030http://doi.org/10.1016/j.anucene.2013.05.030
freya-269665 final publishable summary report - CORDIS. pp.10,21 https://cordis.europa.eu/docs/results/269/269665/final1-freya-final-publishable-summary-report-main-s-t-results-and-foregrounds.pdfhttps://cordis.europa.eu/docs/results/269/269665/final1-freya-final-publishable-summary-report-main-s-t-results-and-foregrounds.pdf
J. Janczyszyn, G. Domańska, P. Stanisz, Fission chambers for space effect reduction in the application of the area method. Ann. Nucl. Energy 120, 896–898 (2018). doi: 10.1016/j.anucene.2018.01.025http://doi.org/10.1016/j.anucene.2018.01.025
A. Talamo, Y. Gohar, F. Gabrielli, et al., Advances in the computation of the Sjöstrand, Rossi and Feynman distributions. Progr. Nucl. Energy, 101(Part C), 299–311 (2017). doi: 10.1016/j.pnucene.2017.01.006http://doi.org/10.1016/j.pnucene.2017.01.006
G. Galli, H. Hamrita, M. J. Kirkpatrick, et al., A new discriminating high temperature fission chamber filled with xenon designed for sodium-cooled fast reactors. Nucl. Instrum. Meth. A. 968, 163947 (2020). doi: 10.1016/j.nima.2020.163947http://doi.org/10.1016/j.nima.2020.163947
S. Fiore, O. Aberle, M. Angelone et al., Self Powered Neutron Detectors with High Energy Sensitivity. ANIMMA 2019. EPJ Web of Conferences. 225, 02001 (2020). doi: 10.1051/epjconf/202022502001http://doi.org/10.1051/epjconf/202022502001
H. S. Kim, J. H. Ha, S. Park et al., Characteristics of Fabricated Neutron Detectors Based on a SiC Semiconductor. J. Nucl. Sci. Technol. 48 10, 1343-1347 (2012). doi: 10.1080/18811248.2011.9711825http://doi.org/10.1080/18811248.2011.9711825
C. Jammes, P. Filliatre, Zs. Elter et al., Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: simulations and experimental validations. 4th In-ternational Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), Apr 2015, Lisbon, Portugal. 0.1109/ANIMMA.2015.7465647. hal-01282997 (2015).