1.Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
2.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
3.School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
He-Fei Huang (huanghefei@sinap.ac.cn)
Scan for full text
Min Liu, Yong-Feng Yan, Zhen-Bo Zhu, 等. Influence of He ion irradiation on the microstructure and hardness of Ni–TiCNP composites[J]. Nuclear Science and Techniques, 2021,32(11):121
Min Liu, Yong-Feng Yan, Zhen-Bo Zhu, et al. Influence of He ion irradiation on the microstructure and hardness of Ni–TiCNP composites[J]. Nuclear Science and Techniques, 2021,32(11):121
Min Liu, Yong-Feng Yan, Zhen-Bo Zhu, 等. Influence of He ion irradiation on the microstructure and hardness of Ni–TiCNP composites[J]. Nuclear Science and Techniques, 2021,32(11):121 DOI: 10.1007/s41365-021-00961-4.
Min Liu, Yong-Feng Yan, Zhen-Bo Zhu, et al. Influence of He ion irradiation on the microstructure and hardness of Ni–TiCNP composites[J]. Nuclear Science and Techniques, 2021,32(11):121 DOI: 10.1007/s41365-021-00961-4.
In the present study, samples of a titanium carbide nanoparticle-reinforced nickel alloy (Ni–TiC,NP, composite) were irradiated with 1 MeV He ions at 700 °C. The evolution of He bubbles and nanohardness was characterized using transmission electron microscopy (TEM) and nanoindentation, respectively. TEM images showed that the size and number density of He bubbles in the grains were affected by the He ion fluence. The number density first increased significantly and then decreased with increasing ion dose, while the size exhibited an inverse trend. Moreover, the swelling induced by He bubbles continuously increased with increasing ion dose. He bubbles also formed in the grain boundaries, interior of the TiC nanoparticles, and interfaces between the TiC nanoparticles and Ni matrix. Nanoindentation measurements indicated a decrease in nanohardness after irradiation, which is attributed to the disappearance of intrinsic dislocation lines caused by He ion irradiation.
Ni–TiCNP compositesHe bubblesSwellingIrradiation-induced softening
Chen J.M., Carbon neutrality: Toward a sustainable future. The Innovation 2(3), 100127 (2021). doi: 10.1016/j.xinn.2021.100127http://doi.org/10.1016/j.xinn.2021.100127
Chen G., Wang Q., Chu X., Accelerated spread of Fukushima’s waste water by ocean circulation. The Innovation 2(2), 100119 (2021). doi: 10.1016/j.xinn.2021.100119http://doi.org/10.1016/j.xinn.2021.100119
Rosenthal M.W., Haubenreich P.N., Briggs R.B., The development status of molten-salt breeder reactors. ORNL-4812. 195-218 (1972). doi: 10.2172/4622532http://doi.org/10.2172/4622532
Zou Y., Wang X., Lyu P. et al., Microstructural characteristics of pure nickel foils under argon ion irradiation. Nuclear Techniques 44(8), 080203 (2021). doi: 10.11889/j.0253-3219.2021.hjs.44.080203http://doi.org/10.11889/j.0253-3219.2021.hjs.44.080203 (in Chinese)
McCoy H.E., Status of materials development for molten salt reactors. ORNL-TM-5920. 1-30 (1978).
Fu C.-T., Yinling W., Chu X.-W. et al., Grain boundary engineering for control of tellurium diffusion in GH3535 alloy. J. Nucl. Mater. 497, 76-83 (2017). doi: 10.1016/j.jnucmat.2017.10.052http://doi.org/10.1016/j.jnucmat.2017.10.052
Lei G., Yang S., Liu R. et al., The effect of He bubbles on the corrosion properties of nickel-based alloy in molten salt environment. Nuclear Techniques 42(4), 040602 (2019). doi: 10.11889/j.0253-3219.2019.hjs.42.040602http://doi.org/10.11889/j.0253-3219.2019.hjs.42.040602 (in Chinese)
Bao H.-S., Gong Z.-H., Chen Z.-Z. et al., Evolution of precipitates in Ni–Co–Cr–W–Mo superalloys with different tungsten contents. Rare Metals 39(6), 716-724 (2020). doi: 10.1007/s12598-020-01400-whttp://doi.org/10.1007/s12598-020-01400-w
Liu M., Hou J., Han F. et al., Effects of He ion irradiation on the corrosion performance of alloy GH3535 welded joint in molten FLiNaK. Corrosion Sci. 146, 172-178 (2019). doi: 10.1016/j.corsci.2018.10.038http://doi.org/10.1016/j.corsci.2018.10.038
Lei G., Xie R., Huang H. et al., The effect of He bubbles on the swelling and hardening of UNS N10003 alloy. J. Alloys Comp. 746, 153-158 (2018). doi: 10.1016/j.jallcom.2018.02.291http://doi.org/10.1016/j.jallcom.2018.02.291
Huang H.F., Zhang W., De Los Reyes M. et al., Mitigation of He embrittlement and swelling in nickel by dispersed SiC nanoparticles. Mater. Des. 90, 359-363 (2016). doi: 10.1016/j.matdes.2015.10.147http://doi.org/10.1016/j.matdes.2015.10.147
Zhu Z., Huang H., Liu J., et al., Helium-induced damage behavior in high temperature nickel-based alloys with different chemical composition. J. Nucl. Mater. 541, 152419 (2020). doi: 10.1016/j.jnucmat.2020.152419http://doi.org/10.1016/j.jnucmat.2020.152419
Zhu Z., Huang H., Muránsky O. et al., On the irradiation tolerance of nano-grained Ni–Mo–Cr alloy: 1 MeV He+ irradiation experiment. J. Nucl. Mater. 544, 152694 (2021). doi: 10.1016/j.jnucmat.2020.152694http://doi.org/10.1016/j.jnucmat.2020.152694
Fluoride-Salt-Cooled High Temperature Reactor (FHR) Materials, Fuels and Components White Paper. UCBTH-12-003. 1-163 (2013).
Liu S., Ye X.-X., Jiang L. et al., Effect of tungsten content on the microstructure and tensile properties of Ni–xW–6Cr alloys. Mater. Sci. Eng. A 655, 269-276 (2016). doi: 10.1016/j.msea.2016.01.010http://doi.org/10.1016/j.msea.2016.01.010
Yang C., Wei T., Zhu G. et al., Synergistic effect of Mo2C micro-particles and SiC nanoparticles on irradiation-induced hardening in dispersion-precipitation strengthened NiMo alloys. Scripta Mater. 189, 1-6 (2020). doi: 10.1016/j.scriptamat.2020.07.058http://doi.org/10.1016/j.scriptamat.2020.07.058
Yang C., Huang H.-F., de los Reyes M. et al., Microstructures and tensile properties of ultrafine-grained Ni–(1–3.5) wt% SiCNP composites prepared by a powder metallurgy route. Acta Metallurgica Sinica (English Letters). 28(7), 809-816 (2015). doi: 10.1007/s40195-015-0261-5http://doi.org/10.1007/s40195-015-0261-5
Li Y., Li J., Fu C. et al., Damage characteristics of selective laser melted 304L stainless steel under Xe ion irradiation. Nuclear Techniques 44(7), 9-16 (2021). doi: 10.11889/j.0253-3219.2021.hjs.44.080203http://doi.org/10.11889/j.0253-3219.2021.hjs.44.080203 (in Chinese)
Zhou X., Huang H., Xie R. et al., The key role of ball milling time in the microstructure and mechanical property of Ni-TiCNP composites. J Mater. Eng. Perform. 25(12), 5280-5288 (2016). doi: 10.1007/s11665-016-2403-yhttp://doi.org/10.1007/s11665-016-2403-y
Xu Q., Chen H.Y., Luo L.M. et al., Microstructural evolution in W-1%TiC alloy irradiated He ions at high temperatures. Tungsten 1(3), 229-235 (2019). doi: 10.1007/s42864-019-00026-5http://doi.org/10.1007/s42864-019-00026-5
Ziegler J.F., Ziegler M.D., Biersack J.P., SRIM – The stopping and range of ions in matter (2010). Nucl. Instrum. Meth. B 268(11), 1818-1823 (2010). doi: 10.1016/j.nimb.2010.02.091http://doi.org/10.1016/j.nimb.2010.02.091
Kesternich W., Helium trapping at dislocations, precipitates and grain boundaries. Radiat. Eff. 78(1-4), 261-273 (1983). doi: 10.1080/00337578308207376http://doi.org/10.1080/00337578308207376
Liu A., Huang H., Liu J. et al., Improvement of helium swelling resistance of nickel-based alloy via proper SiCNP dispersion. Materials Today Communications 26, 102011 (2021). doi: 10.1016/j.mtcomm.2021.102011http://doi.org/10.1016/j.mtcomm.2021.102011
Zhou X.L., Huang H.F., Xie R. et al., Helium ion irradiation behavior of Ni-1wt.%SiCNP composite and the effect of ion flux. J. Nucl. Mater. 467, 848-854 (2015). doi: 10.1016/j.jnucmat.2015.11.004http://doi.org/10.1016/j.jnucmat.2015.11.004
Mansur L.K., Theory and experimental background on dimensional changes in irradiated alloys. J. Nucl. Mater. 216, 97-123 (1994). doi: 10.1016/0022-3115(94)90009-4http://doi.org/10.1016/0022-3115(94)90009-4
Gao J., Huang H., Liu X. et al., A special coarsening mechanism for intergranular helium bubbles upon heating: A combined experimental and numerical study. Scripta Mater. 147, 93-97 (2018). doi: 10.1016/j.scriptamat.2018.01.006http://doi.org/10.1016/j.scriptamat.2018.01.006
Gao J., Bao L., Huang H. et al., Evolution law of helium bubbles in hastelloy N alloy on post-irradiation annealing conditions. Materials 9(10), 832 (2016). doi: 10.3390/ma9100832http://doi.org/10.3390/ma9100832
Trinkaus H., Singh B.N., Helium accumulation in metals during irradiation – where do we stand? J. Nucl. Mater. 323(2), 229-242 (2003). doi: 10.1016/j.jnucmat.2003.09.001http://doi.org/10.1016/j.jnucmat.2003.09.001
Klimenkov M., Lindau R., Jäntsch U. et al., Effect of irradiation temperature on microstructure of ferritic-martensitic ODS steel. J. Nucl. Mater. 493, 426-435 (2017). doi: 10.1016/j.jnucmat.2017.06.024http://doi.org/10.1016/j.jnucmat.2017.06.024
Luo L.M., Zhao Z.H., Yao G. et al., Recent progress on preparation routes and performance evaluation of ODS/CDS-W alloys for plasma facing materials in fusion devices. J. Nucl. Mater. 548, 152857 (2021). doi: 10.1016/j.jnucmat.2021.152857http://doi.org/10.1016/j.jnucmat.2021.152857
Chen J., Jung P., Hoffelner W. et al., Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress. Acta Mater. 56(2), 250-258 (2008). doi: 10.1016/j.actamat.2007.09.016http://doi.org/10.1016/j.actamat.2007.09.016
Hasegawa A., Ejiri M., Nogami S. et al., Effects of helium on ductile-brittle transition behavior of reduced-activation ferritic steels after high-concentration helium implantation at high temperature. J. Nucl. Mater. 386-388, 241-244 (2009). doi: 10.1016/j.jnucmat.2008.12.102http://doi.org/10.1016/j.jnucmat.2008.12.102
Nix W.D., Gao H., Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411-425 (1998). doi: 10.1016/S0022-5096(97)00086-0http://doi.org/10.1016/S0022-5096(97)00086-0
Pharr G.M., Herbert E.G., Gao Y., The indentation size effect: A critical examination of experimental observations and mechanistic interpretations. Ann. Rev. Mater. Res. 40(1), 271-292 (2010). doi: 10.1146/annurev-matsci-070909-104456http://doi.org/10.1146/annurev-matsci-070909-104456
Wang J., Ma Z., Liu C. et al., Helium bubble evolution and deformation of single crystal α-Fe. J. Mater. Sci. 54(2), 1785-1796 (2019). doi: 10.1007/s10853-018-2915-yhttp://doi.org/10.1007/s10853-018-2915-y
Chen H.C., Li D.H., Lui R.D. et al., Ion irradiation induced disappearance of dislocations in a nickel-based alloy. Nucl. Instrum. Meth. B 377, 94-98 (2016). doi: 10.1016/j.nimb.2016.04.030http://doi.org/10.1016/j.nimb.2016.04.030
Han Q., Li Y., Ran G., et al., In-situ TEM observation of the evolution of helium bubbles & dislocation loops and their interaction in Pd during He+ irradiation. J. Mater. Sci. Technol. 87, 108-119 (2021). doi: 10.1016/j.jmst.2021.01.069http://doi.org/10.1016/j.jmst.2021.01.069
Li Y., Ran G., Guo Y., et al., The evolution of dislocation loop and its interaction with pre-existing dislocation in He+-irradiated molybdenum: in-situ TEM observation and molecular dynamics simulation. Acta Mater. 201, 462-476 (2020). doi: 10.1016/j.actamat.2020.10.022http://doi.org/10.1016/j.actamat.2020.10.022
Li Y., Wang L., Ran G. et al., In-situ TEM investigation of 30 keV he+ irradiated tungsten: Effects of temperature, fluence, and sample thickness on dislocation loop evolution. Acta Mater. 206, 116618 (2021). doi: 10.1016/j.actamat.2020.116618http://doi.org/10.1016/j.actamat.2020.116618
0
浏览量
4
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构