1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
lengyongbin@sinap.ac.cn
Scan for full text
Xing-Yi Xu, Yong-Bin Leng, Bo Gao, 等. HOTCAP: A new software package for high-speed oscilloscope-based three-dimensional bunch charge and position measurement[J]. Nuclear Science and Techniques, 2021,32(11):131
Xing-Yi Xu, Yong-Bin Leng, Bo Gao, et al. HOTCAP: A new software package for high-speed oscilloscope-based three-dimensional bunch charge and position measurement[J]. Nuclear Science and Techniques, 2021,32(11):131
Xing-Yi Xu, Yong-Bin Leng, Bo Gao, 等. HOTCAP: A new software package for high-speed oscilloscope-based three-dimensional bunch charge and position measurement[J]. Nuclear Science and Techniques, 2021,32(11):131 DOI: 10.1007/s41365-021-00966-z.
Xing-Yi Xu, Yong-Bin Leng, Bo Gao, et al. HOTCAP: A new software package for high-speed oscilloscope-based three-dimensional bunch charge and position measurement[J]. Nuclear Science and Techniques, 2021,32(11):131 DOI: 10.1007/s41365-021-00966-z.
A software package to be used in high-speed oscilloscope-based three-dimensional bunch-by-bunch charge and position measurement is presented. The software package takes the pick-up electrode signal waveform recorded by the high-speed oscilloscope as input, and it calculates and outputs the bunch-by-bunch charge and position. In addition to enabling a three-dimensional observation of the motion of each passing bunch on all beam position monitor pick-up electrodes, it offers many additional features such as injection analysis, bunch response function reconstruction, and turn-by-turn beam analysis. The software package has an easy-to-understand graphical user interface and convenient interactive operation, which has been verified on the Windows 10 system.
Bunch-by-bunch measurementHOTCAP software packageData analysisHigh-speed oscilloscope
Tanaka H., Trends and challenges in the future storage ring light sources, in Proc. of the ICFA Advanced Beam Dynamics Workshop (FLS’18) (JACoW, 2018). http://ir.ihep.ac.cn/handle/311005/280654http://ir.ihep.ac.cn/handle/311005/280654
Liu J.J., Ma X.P., Pei G.X. et al. Phase-stabilized RF transmission system based on the LLRF controller and optical delay line. Nucl. Sci. Tech. 30(12), 177 (2019) doi: 10.1007/s41365-019-0697-9http://doi.org/10.1007/s41365-019-0697-9.
Yang Y., Leng Y.B., Yan Y.B. et al., Injection performance evaluation for SSRF storage ring. Chin. Phys. C 39, 097003 (2015). doi: 10.1088/1674-1137/39/9/097003http://doi.org/10.1088/1674-1137/39/9/097003
Duan L., Leng Y., Yuan R. et al., Injection transient study using a two-frequency bunch length measurement system at the SSRF, Nucl. Sci. Tech. 28, 93 (2017). doi: 10.1007/s41365-017-0247-2http://doi.org/10.1007/s41365-017-0247-2
Chen Z., Yang Y., Leng Y. et al., Wakefield measurement using principal component analysis on bunch-by-bunch information during transient state of injection in a storage ring, Phys. Rev. Accel. Beams 17, 112803 (2014). doi: 10.1103/PhysRevSTAB.17.112803http://doi.org/10.1103/PhysRevSTAB.17.112803
Wang J.H., Li J.Y., Liu Z.P. et al., Modification of BPM System of NSRL Electron Storage Ring and the Closed Orbit Measurement. Journal of University of Science and Technology of China 28, 732 (1998). https://www.cnki.com.cn/Article/CJFDTotal-ZKJD806.018.htmhttps://www.cnki.com.cn/Article/CJFDTotal-ZKJD806.018.htm (in Chinese)
Castro P., Applications of the 1000-turns orbit measurement system at LEP. Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366), vol.1, pp. 456-460, 1999. doi: 10.1109/PAC.1999.795731http://doi.org/10.1109/PAC.1999.795731
Chen Z., Leng Y., Yuan R. et al., Study of algorithms of phase advance measurement between BPMs and its application in SSRF. Nucl. Sci. Tech. 22(5): 261-264 (2011). doi: 10.13538/j.1001-8042/nst.22.261-264http://doi.org/10.13538/j.1001-8042/nst.22.261-264
Chen H., Chen J., Gao B. et al., A fast beam size diagnostic system using high-speed photomultiplier array at SSRF. Proceedings of IPAC2017, Copenhagen, Denmark (JACoW, Geneva, Switzerland, 2017) doi: 10.18429/JACoW-IPAC2017-MOPAB094http://doi.org/10.18429/JACoW-IPAC2017-MOPAB094
Zhou Y., Chen H., Cao S. et al., Bunch-by-bunch longitudinal phase monitor at SSRF. Nucl. Sci. Tech. 29, 113 (2018). doi: 10.1007/s41365-018-0445-6http://doi.org/10.1007/s41365-018-0445-6
Xu X., Leng Y., Zhou Y., Machine learning application in bunch longitudinal phase measurement. Proceedings of IPAC2019, Melbourne, Australia (JACOW, Melbourne, Australia, 2019), pp. 2625-2628. doi: 10.18429/JACoW-IPAC2019-WEPGW064http://doi.org/10.18429/JACoW-IPAC2019-WEPGW064
Kotzian G., Valuch D., Höfle W., Sensitivity of the LHC transverse feedback system to intra-bunch motion. Proceedings of IPAC2017, Copenhagen, Denmark (JACoW, Geneva, Switzerland, 2017) doi: 10.18429/JACoW-IPAC2017-TUPIK093http://doi.org/10.18429/JACoW-IPAC2017-TUPIK093
Kotzian G., Transverse feedback parameter extraction from excitation data. Proceedings of IPAC2017, Copenhagen, Denmark (JACoW, Geneva, Switzerland, 2017) doi: 10.18429/JACoW-IPAC2017-TUPIK094http://doi.org/10.18429/JACoW-IPAC2017-TUPIK094
Kraljevic N.B., Burrows P., Ramjiawan R. et al., Optimisation of a high-resolution, low-latency stripline beam position monitor system for use in intraTrain Feedback. Proceedings of IPAC2017, Copenhagen, Denmark (JACoW, Geneva, Switzerland, 2017) doi: 10.18429/JACoW-IPAC2017-TUPIK110http://doi.org/10.18429/JACoW-IPAC2017-TUPIK110
Scheidt K. and Joly B., Upgrade of beam phase monitors for the ESRF injector and storage ring. Proceedings of IBIC2013, Oxford, UK, 757 (2013). https://accelconf.web.cern.ch/IBIC2013/papers/wepc33.pdfhttps://accelconf.web.cern.ch/IBIC2013/papers/wepc33.pdf
Farias R.H.A., Lin L., Rodrigues A.R.D. et al., Upgrade of beam phase monitors for the ESRF injector and storage ring. Phys. Rev. Accel. Beams 4, 072801 (2001) doi: 10.1103/PhysRevSTAB.4.072801http://doi.org/10.1103/PhysRevSTAB.4.072801
Ieiri T., Akai K., Fukuma H. et al., Bunch-by-bunch measurements of the betatron tune and the synchronous phase and their applications to beam dynamics at KEKB. Phys. Rev. Accel. Beams 5, 094402 (2002). doi: 10.1103/PhysRevSTAB.5.094402http://doi.org/10.1103/PhysRevSTAB.5.094402
Zhao Y.K., Sun B.G., Wang J.G. et al., Effective improvement of beam lifetime based on RF phase modulation at the HLS-II storage ring. Nucl. Sci. Tech. 32(1), 1 (2021) doi: 10.1007/s41365-020-00836-0http://doi.org/10.1007/s41365-020-00836-0
Yang Y., Leng Y., Yan Y. et al., Bunch-by-bunch beam position and charge monitor based on broadband scope in SSRF. Proceedings of IPAC2013, Shanghai, China(2013), pp. 595-597. http://accelconf.web.cern.ch/IPAC2013/papers/mopme054.pdfhttp://accelconf.web.cern.ch/IPAC2013/papers/mopme054.pdf
Chen Z., Leng Y., Zou Y. et al., Baseline recovery method to measure bunch charge under low-current mode of SSRF. Nucl. Sci. Tech. 22(5), 261-264 (2011). doi: 10.13538/j.1001-8042/nst.22.261-264http://doi.org/10.13538/j.1001-8042/nst.22.261-264
Chen H., Chen J., Gao B. et al., Bunch-by-bunch beam size measurement during injection at Shanghai synchrotron radiation facility. Nucl. Sci. Tech. 29, 79 (2018). doi: 10.1007/s41365-018-0420-2http://doi.org/10.1007/s41365-018-0420-2
Wang M.W., Xing Q.Z., Zheng S.X. et al., Beam position monitors precise phase pickups for beam energy measurement at the Compact Pulsed Hadron Source. Nucl. Sci. Tech. 30(2), 23 (2019). doi: 10.1007/s41365-019-0545-yhttp://doi.org/10.1007/s41365-019-0545-y
Xie H.M., Gu K.W., Wei Y. et al., A non-invasive ionization profile monitor for transverse beam cooling and orbit oscillation studies in HIRFL-CSR. Nucl. Sci. Tech. 31(4),40 (2020). doi: 10.1007/s41365-020-0743-7http://doi.org/10.1007/s41365-020-0743-7
Xu X., Zhou Y., Leng Y., Machine learning based image processing technology application in bunch longitudinal phase information extraction. Phys. Rev. Accel. Beams 23, 032805 (2020). doi: 10.1103/PhysRevAccelBeams.23.032805http://doi.org/10.1103/PhysRevAccelBeams.23.032805
Xu X. and Leng Y., Beam coupling impedance analyze using bunch-by-bunch measurement. in Proc. IBIC’20, Santos, Brazil, Sep. 2020, pp. 202-205. doi: 10.18429/JACoW-IBIC2020-THAO04http://doi.org/10.18429/JACoW-IBIC2020-THAO04
Xu X., Zhou Y., Leng Y., New noninvasive measurement method of optics parameters in a storage ring using bunch-by-bunch 3D beam position measurement data. Phys. Rev. Accel. Beams 24, 062802 (2021). doi: 10.1103/PhysRevAccelBeams.24.062802http://doi.org/10.1103/PhysRevAccelBeams.24.062802
Nakamura K.K.T., Dat S., Ohshima T., Transverse bunch-by-bunch feedback system for the Spring-8 storage ring. in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004) pp 2049. https://accelconf.web.cern.ch/e04/PAPERS/THPLT068.PDFhttps://accelconf.web.cern.ch/e04/PAPERS/THPLT068.PDF
Lee J., Chun M.H., Kim G.-J. et al., Bunch-by-bunch position measurement and analysis at PLS-II. J. Synchrotron Radiat. 24, 163 (2017). doi: 10.1107/S1600577516018154http://doi.org/10.1107/S1600577516018154
Chen F., Lai L., Leng Y. et al., Design of a new type of beam charge monitor based on bunch by bunch DAQ system. in Proc. IBIC’17, MI, USA, 20-24 August 2017 (JACOW, Geneva, Switzerland, 2018), pp. 284-286. doi: 10.1103/PhysRevAccelBeams.24.032802http://doi.org/10.1103/PhysRevAccelBeams.24.032802
Shafer R.E., Beam position monitoring. AIP Conf. Proc. 249, 601(1992). doi: 10.1063/1.41980http://doi.org/10.1063/1.41980
Smith S.R., Beam position monitor engineering. AIP Conf. Proc. 390, 50 (1997). doi: 10.1063/1.52306http://doi.org/10.1063/1.52306
Xu X., Zhou Y., Leng Y. et al., Bunch-by-bunch three-dimensional position and charge measurement in a storage ring. Phys. Rev. Accel. Beams 24, 032802 (2021). doi: 10.1103/PhysRevAccelBeams.24.062802http://doi.org/10.1103/PhysRevAccelBeams.24.062802
Wang G.M., Shaftan T., Cheng W.X., et al., Beam diagnostics using BPM signals from injected and stored beams in a storage ring, in Proceedings of 24th Particle Accelerator Conference (PAC’11), New York, NY, USA, March–April 2011, Paper THP132, pp. 2369-2371. https://accelconf.web.cern.ch/PAC2011/papers/THP132.PDFhttps://accelconf.web.cern.ch/PAC2011/papers/THP132.PDF
Cheng W.X., Bacha B., Kosciuk B.N. et al., Performance of NSLS2 button BPM, in Proceedings of 2nd International Beam Instrumentation Conference (IBIC’13), Oxford, UK, September 2013, Paper WEPC09, pp. 678-681. https://accelconf.web.cern.ch/ibic2013/papers/wepc09.pdfhttps://accelconf.web.cern.ch/ibic2013/papers/wepc09.pdf
Li H.H., Liu G.M., Zhang W.Z. et al., Beam dynamics in the SSRF storage ring, in Proceeding of the 1st International Particle Accelerator Conference (JACoW, Kyoto, Japan, 2010), pp. 2591-2593. https://accelconf.web.cern.ch/IPAC10/papers/wepea045.pdfhttps://accelconf.web.cern.ch/IPAC10/papers/wepea045.pdf
Li W., Xu H., Wang L. et al., The upgraded scheme of Hefei Light Source, in Proceedings of IPAC’10, Kyoto, Japan (JACOW, Melbourne, Australia, 2010). doi: 10.1063/1.3463324http://doi.org/10.1063/1.3463324
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构