Jin-Ying Ma, Feng Qiu, Long-Bo Shi, 等. Precise calibration of cavity forward and reflected signals using low-level radio-frequency system[J]. Nuclear Science and Techniques, 2022,33(1):4
Jin-Ying Ma, Feng Qiu, Long-Bo Shi, et al. Precise calibration of cavity forward and reflected signals using low-level radio-frequency system[J]. Nuclear Science and Techniques, 2022,33(1):4
Jin-Ying Ma, Feng Qiu, Long-Bo Shi, 等. Precise calibration of cavity forward and reflected signals using low-level radio-frequency system[J]. Nuclear Science and Techniques, 2022,33(1):4 DOI: 10.1007/s41365-022-00985-4.
Jin-Ying Ma, Feng Qiu, Long-Bo Shi, et al. Precise calibration of cavity forward and reflected signals using low-level radio-frequency system[J]. Nuclear Science and Techniques, 2022,33(1):4 DOI: 10.1007/s41365-022-00985-4.
Precise calibration of cavity forward and reflected signals using low-level radio-frequency system
摘要
Abstract
Precise measurements of the cavity forward (,V,f,) and reflected signals (,V,r,) are essential for characterizing other key parameters such as the cavity detuning and forward power. In practice, it is challenging to measure ,V,f, and ,V,r, precisely because of crosstalk between the forward and reflected channels (e.g., coupling between the cavity reflected and forward signals in a directional coupler with limited directivity). For DESY, a method based on the cavity differential equation was proposed to precisely calibrate the actual ,V,f, and ,V,r,. In this study, we verified the validity and practicability of this approach for the Chinese ADS front-end demo superconducting linac (CAFe) facility at the Institute of Modern Physics and a compact energy recovery linac (cERL) test machine at KEK. At the CAFe facility, we successfully calibrated the actual ,V,f, signal using this method. The result demonstrated that the directivity of directional couplers might seriously affect the accuracy of ,V,f, measurement. At the cERL facility, we calibrated the Lorentz force detuning (LFD) using the actual ,V,f,. Our study confirmed that the precise calibration of ,V,f, significantly improves the accuracy of the cavity LFD measurement.
关键词
Keywords
Forward and reflected signalsMeasurementCalibration
references
Y. He, T. Tan, A.D. Wu et al., Operation Experience at CAFe. in Oral presentation of the 2021 International Conference on RF Superconductivity (SRF'21), virtual conference, (JACoW, virtual conference, 2021). Available at https://indico.frib.msu.edu/event/38/attachments/160/1298/MOOFAV03_yuan_he.pdfhttps://indico.frib.msu.edu/event/38/attachments/160/1298/MOOFAV03_yuan_he.pdf.
S.H. Liu, Z.J. Wang, H. Jia et al., Physics design of the CIADS 25 MeV demo facility. Nucl. Instrum. Meth. A. 843, 11-17 (2017). doi: 10.1016/j.nima.2016.10.055http://doi.org/10.1016/j.nima.2016.10.055
Q. Chen, Z. Gao, Z.L. Zhu et al., Multi-frequency point supported LLRF front-end for CiADS wide-bandwidth application. Nucl. Sci. Tech. 31(3), 29 (2020). doi: 10.1007/s41365-020-0733-9http://doi.org/10.1007/s41365-020-0733-9
F. Qiu, S. Michizono, T. Matsumoto et al., Combined disturbance-observer-based control and iterative learning control design for pulsed superconducting radio frequency cavities. Nucl. Sci. Tech. 32(6), 56 (2021). doi: 10.1007/s41365-021-00894-yhttp://doi.org/10.1007/s41365-021-00894-y
M. Omet, A. Kuramoto, T. Matsumoto et al., Development and application of a frequency scan-based and a beam-based calibration method for the llrf systems at KEK STF. in Proceedings of the 9th Annual Meeting of Particle Accelerator Society of Japan (PASJ2015), Osaka, Japan, 2012. Available at https://www.pasj.jp/web_publish/pasj9/proceedings/PDF/FRLR/FRLR09.pdfhttps://www.pasj.jp/web_publish/pasj9/proceedings/PDF/FRLR/FRLR09.pdf
R. Kalt, Z.Q. Geng, RF and beam stability at SwissFEL, in Oral presentation of the LLRF Workshop 2019, Chicago, USA September 29 – October 3, 2019. Available at https://indico.fnal.gov/event/21836/contributions/64989/attachments/40775/49374/RF_and_beam_stability_at_SwissFEL.pdfhttps://indico.fnal.gov/event/21836/contributions/64989/attachments/40775/49374/RF_and_beam_stability_at_SwissFEL.pdf
F. Qiu, T. Miura, D. Arakawa et al., RF commissioning of the compact energy recovery linac superconducting cavities in pulse mode. Nucl. Instrum. Meth. A. 985, 164660 (2021). doi: 10.1016/j.nima.2020.164660http://doi.org/10.1016/j.nima.2020.164660
B. Alexander, Development of a finite state machine for the automated operation of the LLRF control at FLASH. Ph.D. thesis, Universitt Hamburg, 2007.
M. Grecki, S. Pfeiffer, Resonance control of superconducting cavities at heavy beam loading conditions. in Proceeding of IPAC2012, New Orleans, Louisiana, USA. doi: 10.1103/PhysRevAccelBeams.21.032003http://doi.org/10.1103/PhysRevAccelBeams.21.032003
F. Qiu, S. Michizono, T. Matsumoto et al., Real-time cavity simulator-based low-level radio-frequency test bench and applications for accelerators. Phys. Rev. Accel. Beams 21, 032003 (2018). doi: 10.1103/PhysRevAccelBeams.21.032003http://doi.org/10.1103/PhysRevAccelBeams.21.032003
M. omet, S. Michizono, T. Miura et al., FPGA-based klystron linearization implementations in scope of ILC. Nucl. Instrum. Meth. A. 768, 69-76 (2014). doi: 10.1016/j.nima.2014.09.007http://doi.org/10.1016/j.nima.2014.09.007
F. Qiu, Z.L. Zhu, J.Y. Ma et al., An approach to characterize Lorentz force transfer function for superconducting cavities. Nucl. Instrum. Meth. A. 1012, 165633 (2021). doi: 10.1016/j.nima.2021.165633http://doi.org/10.1016/j.nima.2021.165633
L.P. Sun, Z.Y. Yuan, C. Zhang et al., New thermal optimization scheme of power module in solid-state amplifier. Nucl. Sci. Tech. 30(4), 68 (2019). doi: 10.1007/s41365-019-0585-3http://doi.org/10.1007/s41365-019-0585-3
M. Akemoto D. Arakawaet, S. Asaokaal et al., Construction and commissioning of the compact energy-recovery linac at KEK. Nucl. Instrum. Meth. A. 877, 197-219 (2018). doi: 10.1016/j.nima.2017.08.051http://doi.org/10.1016/j.nima.2017.08.051
Y. Morikawa, K. Haga, M. Hagiwara et al., New Industrial application beam-line for the cERL in KEK, in Proceedings of the 10th International Particle Accelerator Conference, Melbourne, Australia, 2019. doi: 10.18429/JACoW-IPAC2019-THPMP012http://doi.org/10.18429/JACoW-IPAC2019-THPMP012
F. Qiu, T. Miura, D. Arakawa et al., Application of disturbance observer-based control on pulsed superconducting radio frequency cavities. Phys. Rev. Accel. Beams 24(1), 012804 (2021). doi: 10.1103/PhysRevAccelBeams.24.012804http://doi.org/10.1103/PhysRevAccelBeams.24.012804
R.R. Mitchell, K.Y. Matsumoto, G. Ciovati et al., Lorentz Force Detuning analysis of the spallation neutron source (SNS) accelerating cavities, in 10th Workshop on RF Superconductivity, Tsukuba City, Japan, 2001. Available at https://digital.library.unt.edu/ark:/67531/metadc723708/m2/1/high_res_d/786098.pdfhttps://digital.library.unt.edu/ark:/67531/metadc723708/m2/1/high_res_d/786098.pdf
T. Schilcher, Ph.D. thesis, University Hamburg, 1998.
J.Y. Ma, G.R. Huang, Z. Gao et al., The resonant frequency measurement method for superconducting cavity with Lorentz force detuning. Nucl. Instrum. Meth. A. 993(5),165085 (2021). doi: 10.1016/j.nima.2021.165085http://doi.org/10.1016/j.nima.2021.165085