1.Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
chenjinhui@fudan.edu.cn
Scan for full text
Hai Wang, Jin-Hui Chen. Anisotropy flows in Pb–Pb collisions at LHC energies from parton scatterings with heavy quark trigger[J]. Nuclear Science and Techniques, 2022,33(2):15
Hai Wang, Jin-Hui Chen. Anisotropy flows in Pb–Pb collisions at LHC energies from parton scatterings with heavy quark trigger[J]. Nuclear Science and Techniques, 2022,33(2):15
Hai Wang, Jin-Hui Chen. Anisotropy flows in Pb–Pb collisions at LHC energies from parton scatterings with heavy quark trigger[J]. Nuclear Science and Techniques, 2022,33(2):15 DOI: 10.1007/s41365-022-00999-y.
Hai Wang, Jin-Hui Chen. Anisotropy flows in Pb–Pb collisions at LHC energies from parton scatterings with heavy quark trigger[J]. Nuclear Science and Techniques, 2022,33(2):15 DOI: 10.1007/s41365-022-00999-y.
By implementing an additional heavy quark–antiquark pair production trigger in a multiphase transport (AMPT) model, we study the effect on anisotropy flows of identified particles with a focus on charged particles and quarkonium (,J,/Ψ and ,,). A systematic increase in the collision rate for active partons in the AMPT model with such an implementation has been observed. It leads to a slight increase of identified particles anisotropy flows as a function of transverse momentum (,p,T,) and rapidity, and gives a better description of the experimental data of elliptic flow toward larger ,p,T,. Our approach provides an efficient way to study the heavy quark dynamics in the AMPT model at LHC energies.
Heavy-ion collisionQuark-Gluon PlasmaQuarkoniumCollective flow
K. Yagi, T. Hatsuda, Y. Miake, Quark-gluon plasma: From big bang to little bang. Cambridge University Press ISBN -10: 0521561086.
J. Chen, D. Keane, Y.G. Ma, et al., Antinuclei in Heavy-Ion Collisions. Phys. Rept. 760, 1-39 (2018). doi: 10.1016/j.physrep.2018.07.002http://doi.org/10.1016/j.physrep.2018.07.002
P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). doi: 10.1103/PhysRevLett.94.111601http://doi.org/10.1103/PhysRevLett.94.111601
N. Demir, S.A. Bass, Shear-Viscosity to Entropy-Density Ratio of a Relativistic Hadron Gas. Phys. Rev. Lett. 102, 172302 (2009). doi: 10.1103/PhysRevLett.102.172302http://doi.org/10.1103/PhysRevLett.102.172302
U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 63, 123-151 (2013). doi: 10.1146/annurev-nucl-102212-170540http://doi.org/10.1146/annurev-nucl-102212-170540
S.A. Voloshin, A.M. Poskanzer, R. Snellings, Collective phenomena in non-central nuclear collisions. Landolt-Bornstein 23, 293-333 (2010). doi: 10.1007/978-3-642-01539-7_10http://doi.org/10.1007/978-3-642-01539-7_10
C. Adler, Z. Ahammed, C. Allgower, et al., Elliptic flow from two and four particle correlations in Au+Au collisions at s(NN)**(1/2) = 130-GeV. Phys. Rev. C 66, 034904 (2002). doi: 10.1103/PhysRevC.66.034904http://doi.org/10.1103/PhysRevC.66.034904
B. Alver, B.B. Back, M.D.o. Baker, Importance of correlations and fluctuations on the initial source eccentricity in high-energy nucleus-nucleus collisions. Phys. Rev. C 77, 014906 (2008). doi: 10.1103/PhysRevC.77.014906http://doi.org/10.1103/PhysRevC.77.014906
B.I. Abelev, M.M. Aggarwal, Z. Ahammed, et al., Centrality dependence of charged hadron and strange hadron elliptic flow from s(NN)**(1/2) = 200-GeV Au + Au collisions. Phys. Rev. C 77, 054901 (2008). doi: 10.1103/PhysRevC.77.054901http://doi.org/10.1103/PhysRevC.77.054901
S. Afanasiev, C. Aidala, N.N.o. Ajitanand, Systematic Studies of Elliptic Flow Measurements in Au+Au Collisions at s**(1/2) = 200-GeV. Phys. Rev. C 80, 024909 (2009). doi: 10.1103/PhysRevC.80.024909http://doi.org/10.1103/PhysRevC.80.024909
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, et al., Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at =2.76 TeV. Phys. Rev. C 87, 014902 (2013). doi: 10.1103/PhysRevC.87.014902http://doi.org/10.1103/PhysRevC.87.014902
G. Aad, B. Abbott, J. Abdallah, et al., Measurement of event-plane correlations in TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C 90, 024905 (2014). doi: 10.1103/PhysRevC.90.024905http://doi.org/10.1103/PhysRevC.90.024905
S. Acharya, F. Acosta, D.o. Adamova, Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at and 2.76 TeV. JHEP 07, 103 (2018). doi: 10.1007/JHEP07(2018)103http://doi.org/10.1007/JHEP07(2018)103
K. Dusling, W. Li, B. Schenke, Novel collective phenomena in high-energy proton–proton and proton–nucleus collisions. Int. J. Mod. Phys. E 25, 1630002 (2016). doi: 10.1142/S0218301316300022http://doi.org/10.1142/S0218301316300022
J.L. Nagle, W.A. Zajc, Small System Collectivity in Relativistic Hadronic and Nuclear Collisions. Ann. Rev. Nucl. Part. Sci. 68, 211-235 (2018). doi: 10.1146/annurev-nucl-101916-123209http://doi.org/10.1146/annurev-nucl-101916-123209
C. Shen, L. Yan, Recent development of hydrodynamic modeling in heavy-ion collisions. Nucl. Sci. Tech. 31, 122 (2020). doi: 10.1007/s41365-020-00829-zhttp://doi.org/10.1007/s41365-020-00829-z
S. Wu, C. Shen, H. Song, Dynamical exploring the QCD matter at finite temperatures and densities-a short review. Chin. Phys. Lett. 38, 081201 (2021). doi: 10.1088/0256-307X/38/8/081201http://doi.org/10.1088/0256-307X/38/8/081201
Z. Han, B. Chen, Y. Liu, Critical temperature of deconfinement in a constrained space using a bag model at vanishing baryon density. Chin. Phys. Lett. 37, 112501 (2020). doi: 10.1088/0256-307X/37/11/112501http://doi.org/10.1088/0256-307X/37/11/112501
R.H. Fang, R.D. Dong, D.F. Hou, et al., Thermodynamics of the system of massive Dirac fermions in a uniform magnetic field. Chin. Phys. Lett. 38, 091201 (2021). doi: 10.1088/0256-307X/38/9/091201http://doi.org/10.1088/0256-307X/38/9/091201
T. Matsui, H. Satz, Suppression by Quark-Gluon Plasma Formation. Phys. Lett. B 178, 416-422 (1986). doi: 10.1016/0370-2693(86)91404-8http://doi.org/10.1016/0370-2693(86)91404-8
N. Brambilla, S. Eidelman, B. Heltsley, et al., Heavy Quarkonium: Progress, Puzzles, and Opportunities. Eur. Phys. J. C 71, 1534 (2011). doi: 10.1140/epjc/s10052-010-1534-9http://doi.org/10.1140/epjc/s10052-010-1534-9
Z.B. Tang, W.M. Zha, Y.F. Zhang, An experimental review of open heavy flavor and quarkonium production at RHIC. Nucl. Sci. Tech. 31, 81 (2020). doi: 10.1007/s41365-020-00785-8http://doi.org/10.1007/s41365-020-00785-8
J. Zhao, K. Zhou, S. Chen, et al., Heavy flavors under extreme conditions in high energy nuclear collisions. Prog. Part. Nucl. Phys. 114, 103801 (2020). doi: 10.1016/j.ppnp.2020.103801http://doi.org/10.1016/j.ppnp.2020.103801
A. Adare, S. Afanasiev, C. Aidala, et al., Production vs Centrality, Transverse Momentum, and Rapidity in Au+Au Collisions at GeV. Phys. Rev. Lett. 98, 232301 (2007). doi: 10.1103/PhysRevLett.98.232301http://doi.org/10.1103/PhysRevLett.98.232301
R. Aaij, B. Adeva, M. Adinolfi, et al., Study of production and cold nuclear matter effects in p Pb collisions at =5 TeV. JHEP 07, 094 (2014). doi: 10.1007/JHEP07(2014)094http://doi.org/10.1007/JHEP07(2014)094
L. Adamczyk, J.K. Adkins, G. Agakishiev, et al., Energy dependence of production in Au+Au collisions at 39, 62.4 and 200 GeV. Phys. Lett. B 771, 13-20 (2017). doi: 10.1016/j.physletb.2017.04.078http://doi.org/10.1016/j.physletb.2017.04.078
V. Khachatryan, et al., Suppression of and production in PbPb collisions at = 2.76 TeV. Phys. Lett. B 770, 357-379 (2017). doi: 10.1016/j.physletb.2017.04.031http://doi.org/10.1016/j.physletb.2017.04.031
M. Aaboud, G. Aad, B. Abbott, et al., Prompt and non-prompt and suppression at high transverse momentum in 5.02TeV Pb+Pb collisions with the ATLAS experiment. Eur. Phys. J. C 78, 762 (2018). doi: 10.1140/epjc/s10052-018-6219-9http://doi.org/10.1140/epjc/s10052-018-6219-9
M. Aaboud, A. G., B. Abbott, et al., Measurement of quarkonium production in proton–lead and proton–proton collisions at 5.02TeV with the ATLAS detector. Eur. Phys. J. C 78, 171 (2018). doi: 10.1140/epjc/s10052-018-5624-4http://doi.org/10.1140/epjc/s10052-018-5624-4
J. Adam, et al., Measurement of inclusive suppression in Au+Au collisions at = 200 GeV through the dimuon channel at STAR. Phys. Lett. B 797, 134917 (2019). doi: 10.1016/j.physletb.2019.134917http://doi.org/10.1016/j.physletb.2019.134917
S. Acharya, D. Adamová, S.P. Adhya, et al., Measurement of elliptic flow at forward rapidity in Pb-Pb collisions at TeV. Phys. Rev. Lett. 123, 192301 (2019). doi: 10.1103/PhysRevLett.123.192301http://doi.org/10.1103/PhysRevLett.123.192301
B.I. Abelev, et al., Observation of an Antimatter Hypernucleus. Science 328, 58-62 (2010). doi: 10.1126/science.1183980http://doi.org/10.1126/science.1183980
B. Schenke, S. Jeon, C. Gale, (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions. Phys. Rev. C 82, 014903 (2010). doi: 10.1103/PhysRevC.82.014903http://doi.org/10.1103/PhysRevC.82.014903
Z.W. Lin, C.M. Ko, B.A. Li, et al., A Multi-phase transport model for relativistic heavy ion collisions. Phys. Rev. C 72, 064901 (2005). doi: 10.1103/PhysRevC.72.064901http://doi.org/10.1103/PhysRevC.72.064901
C. Zhang, Z.W. Lin, Left-right splitting of elliptic flow due to directed flow in heavy ion collisions. arXiv:2109.04987
D. Shen, J. Chen, Z.W. Lin, The effect of hadronic scatterings on the measurement of vector meson spin alignments in heavy-ion collisions. Chin. Phys. C 45, 054002 (2021). doi: 10.1088/1674-1137/abe763http://doi.org/10.1088/1674-1137/abe763
L. Zheng, G.H. Zhang, Y.F. Liu, et al., Investigating high energy proton proton collisions with a multi-phase transport model approach based on PYTHIA8 initial conditions. Eur. Phys. J. C 81, 755 (2021). doi: 10.1140/epjc/s10052-021-09527-5http://doi.org/10.1140/epjc/s10052-021-09527-5
C.Z. Wang, W.Y. Wu, Q.Y. Shou, et al., Interpreting the charge-dependent flow and constraining the chiral magnetic wave with event shape engineering. Phys. Lett. B 820, 136580 (2021). doi: 10.1016/j.physletb.2021.136580http://doi.org/10.1016/j.physletb.2021.136580
H. Wang, J. Chen, Study on open charm hadron production and angular correlation in high-energy nuclear collisions. Nucl. Sci. Tech. 32, 2 (2021). doi: 10.1007/s41365-020-00839-xhttp://doi.org/10.1007/s41365-020-00839-x
X.L. Zhao, G.L. Ma, Y.G. Ma, et al., Validation and improvement of the ZPC parton cascade inside a box. Phys. Rev. C 102, 024904 (2020). doi: 10.1103/PhysRevC.102.024904http://doi.org/10.1103/PhysRevC.102.024904
T. Shao, J. Chen, C.M. Ko, et al., Enhanced production of strange baryons in high-energy nuclear collisions from a multiphase transport model. Phys. Rev. C 102, 014906 (2020). doi: 10.1103/PhysRevC.102.014906http://doi.org/10.1103/PhysRevC.102.014906
C. Zhang, L. Zheng, F. Liu, et al., Update of a multiphase transport model with modern parton distribution functions and nuclear shadowing. Phys. Rev. C 99, 064906 (2019). doi: 10.1103/PhysRevC.99.064906http://doi.org/10.1103/PhysRevC.99.064906
Z.W. Lin, L. Zheng, Further developments of a multi-phase transport model for relativistic nuclear collisions. Nucl. Sci. Tech. 32, 113 (2021). doi: 10.1007/s41365-021-00944-5http://doi.org/10.1007/s41365-021-00944-5
X.N. Wang, M. Gyulassy, HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions. Phys. Rev. D 44, 3501-3516 (1991). doi: 10.1103/PhysRevD.44.3501http://doi.org/10.1103/PhysRevD.44.3501
H. Wang, J. Chen, Y.G. Ma, et al., Charm hadron azimuthal angular correlations in au+ au collisions at sqrtsNN=200 gev from parton scatterings. Nucl. Sci. Tech. 30, 185 (2019). doi: 10.1007/s41365-019-0706-zhttp://doi.org/10.1007/s41365-019-0706-z
H.T. Elze, M. Gyulassy, D. Vasak, Transport Equations for the QCD Quark Wigner Operator. Nucl. Phys. B 276, 706-728 (1986). doi: 10.1016/0550-3213(86)90072-6http://doi.org/10.1016/0550-3213(86)90072-6
H.T. Elze, M. Gyulassy, D. Vasak, Transport Equations for the QCD Gluon Wigner Operator. Phys. Lett. B 177, 402-408 (1986). doi: 10.1016/0370-2693(86)90778-1http://doi.org/10.1016/0370-2693(86)90778-1
B. Zhang, ZPC 1.0.1: A Parton cascade for ultrarelativistic heavy ion collisions. Comput. Phys. Commun. 109, 193-206 (1998). doi: 10.1016/S0010-4655(98)00010-1http://doi.org/10.1016/S0010-4655(98)00010-1
B. Zhang, M. Gyulassy, C.M. Ko, Elliptic flow from a parton cascade. Phys. Lett. B 455, 45-48 (1999). doi: 10.1016/S0370-2693(99)00456-6http://doi.org/10.1016/S0370-2693(99)00456-6
J. Adam, D. Adamová, M.M. Aggarwal, et al., Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at = 5.02 TeV. Phys. Rev. Lett. 116, 222302 (2016). doi: 10.1103/PhysRevLett.116.222302http://doi.org/10.1103/PhysRevLett.116.222302
J. Adam, D. Adamová, M.M. Aggarwal, et al., Anisotropic flow of charged particles in Pb-Pb collisions at TeV. Phys. Rev. Lett. 116, 132302 (2016). doi: 10.1103/PhysRevLett.116.132302http://doi.org/10.1103/PhysRevLett.116.132302
L.Y. Zhang, J.H. Chen, Z.W. Lin, et al., Two-particle angular correlations in pp and p-Pb collisions at energies available at the CERN Large Hadron Collider from a multiphase transport model. Phys. Rev. C 98, 034912 (2018). doi: 10.1103/PhysRevC.98.034912http://doi.org/10.1103/PhysRevC.98.034912
S. Acharya, S. Acharya, D. Adamova, et al., J/ elliptic and triangular flow in Pb-Pb collisions at = 5.02 TeV. JHEP 10, 141 (2020). doi: 10.1007/JHEP10(2020)141http://doi.org/10.1007/JHEP10(2020)141
J. Adam, et al., Pseudorapidity dependence of the anisotropic flow of charged particles in Pb-Pb collisions at TeV. Phys. Lett. B 762, 376-388 (2016). doi: 10.1016/j.physletb.2016.07.017http://doi.org/10.1016/j.physletb.2016.07.017
S. Acharya, D. Adamová, A. Adler, et al., Probing the effects of strong electromagnetic fields with charge-dependent directed flow in Pb-Pb collisions at the LHC. Phys. Rev. Lett. 125, 022301 (2020). doi: 10.1103/PhysRevLett.125.022301http://doi.org/10.1103/PhysRevLett.125.022301
S.K. Das, S. Plumari, S. Chatterjee, et al., Directed Flow of Charm Quarks as a Witness of the Initial Strong Magnetic Field in Ultra-Relativistic Heavy Ion Collisions. Phys. Lett. B 768, 260-264 (2017). doi: 10.1016/j.physletb.2017.02.046http://doi.org/10.1016/j.physletb.2017.02.046
U. Gürsoy, D. Kharzeev, E. Marcus, et al., Charge-dependent Flow Induced by Magnetic and Electric Fields in Heavy Ion Collisions. Phys. Rev. C 98, 055201 (2018). doi: 10.1103/PhysRevC.98.055201http://doi.org/10.1103/PhysRevC.98.055201
S. Chatterjee, P. Bożek, Large directed flow of open charm mesons probes the three dimensional distribution of matter in heavy ion collisions. Phys. Rev. Lett. 120, 192301 (2018). doi: 10.1103/PhysRevLett.120.192301http://doi.org/10.1103/PhysRevLett.120.192301
J. Adam, et al., First Observation of the Directed Flow of D0 and in Au+Au Collisions at = 200 GeV. Phys. Rev. Lett. 123, 162301 (2019). doi: 10.1103/PhysRevLett.123.162301http://doi.org/10.1103/PhysRevLett.123.162301
A.M. Sirunyan, et al., Measurement of prompt D0 and meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at 5.02 TeV. Phys. Lett. B 816, 136253 (2021). doi: 10.1016/j.physletb.2021.136253http://doi.org/10.1016/j.physletb.2021.136253
0
浏览量
4
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构