1.School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
hlchen1@ustc.edu.cn
Scan for full text
Xiao Luo, Lian-Kai Cao, Wen-Pei Feng, 等. Development of a subchannel code for blockage accidents of LMFRs based on the 3D fuel rod model[J]. Nuclear Science and Techniques, 2022,33(3):27
Xiao Luo, Lian-Kai Cao, Wen-Pei Feng, et al. Development of a subchannel code for blockage accidents of LMFRs based on the 3D fuel rod model[J]. Nuclear Science and Techniques, 2022,33(3):27
Xiao Luo, Lian-Kai Cao, Wen-Pei Feng, 等. Development of a subchannel code for blockage accidents of LMFRs based on the 3D fuel rod model[J]. Nuclear Science and Techniques, 2022,33(3):27 DOI: 10.1007/s41365-022-01010-4.
Xiao Luo, Lian-Kai Cao, Wen-Pei Feng, et al. Development of a subchannel code for blockage accidents of LMFRs based on the 3D fuel rod model[J]. Nuclear Science and Techniques, 2022,33(3):27 DOI: 10.1007/s41365-022-01010-4.
To predict the thermal-hydraulic (T/H) parameters of the reactor core for liquid-metal-cooled fast reactors (LMFRs), especially under flow blockage accidents, we developed a subchannel code called KMC-FB. This code uses a time-dependent, four-equation, single-phase flow model together with a 3D heat conduction model for the fuel rods, which is solved by numerical methods based on the finite difference method with a staggered mesh. Owing to the local effect of the blockage on the flow field, low axial flow, increased forced cross flow, and backflow occur. To more accurately simulate this problem, we implemented a robust and novel solution method. We verified the code with a low-flow (~0.01 m/s) and large-scale blockage case. For the preliminary validation, we compared our results with the experimental data of the NACIE-UP BFPS blockage test and the KIT 19ROD blockage test. The results revealed that KMC-FB has sufficient solution accuracy and can be used in future flow blockage analyses for LMFRs.
Subchannel methodCode developmentBlockage accidentLiquid metal cooled fast reactor
T-T. Haileyesus, P-M Sara, P. Werner et al., A review of models for the sodium boiling phenomena in sodium-cooled fast reactor subassemblies. ASME J. Nucl. Rad. Sci. 8(1), 011305 (2021). doi: 10.1115/1.4051066http://doi.org/10.1115/1.4051066
W.P. Chang, K.S. Ha, S.D. Suk et al., A comparative study of the MATRA-LMR-FB calculation with the SABRE result for the flow blockage accident in the sodium cooled fast reactor. Nucl. Eng. Des. 241, 5225-5237 (2011). doi: 10.1016/j.nucengdes.2011.08.039http://doi.org/10.1016/j.nucengdes.2011.08.039
W.P. Feng, X. Zhang, L.K. Cao et al., Development of oxygen/corrosion product mass transfer model and oxidation-corrosion model in the lead-alloy cooled reactor core. Corros. Sci. 190, 109708 (2021). doi: 10.1016/j.corsci.2021.109708http://doi.org/10.1016/j.corsci.2021.109708
B. Jacopo, P.L. Eric, C. Kenneth et al., Studies of polonium removal from molten lead-bismuth for lead-alloy-cooled reactor applications. Nucl. Technol. 147, 406-417 (2004). doi: 10.13182/NT04-A3539http://doi.org/10.13182/NT04-A3539
S.Y. Wei; C.L. Wang, W.X. Tian et al., Research progress in key thermal-hydraulic issue of lead-based fast reactor. Atomic Energy Science and Technology. 53, 326 (2019). doi: 10.7538/yzk.2018.youxian.0335http://doi.org/10.7538/yzk.2018.youxian.0335 (in Chinese)
M.H. Fontana, T.S. Kress, T.S. Parsly et al., Effect of partial blockages in simulated LMFBR fuel assemblies. No. ORNL-TM-4324. Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 1973. URL https://www.osti.gov/biblio/4357059https://www.osti.gov/biblio/4357059
J.T. Han, M.H. Fontana, Blockages in LMFBR fuel assemblies: A review. (1977). URL https://www.osti.gov/biblio/5232755https://www.osti.gov/biblio/5232755
J. Kobayashi, T. Isozaki, M. Tanaka et al., Study on temperature field in porous blockage in a fuel subassembly. 37-pin bundle sodium experiment. No. JNC-TN--9400-2000-025. Japan Nuclear Cycle Development Inst., 1999. URL https://www.osti.gov/etdeweb/biblio/20239902https://www.osti.gov/etdeweb/biblio/20239902
J.M. Creer, D.S. Rowe, J.M. Bates et al., Effects of sleeve blockages on axial velocity and intensity of turbulence in an unheated 7 × 7 rod bundle.[PWR]. No. BNWL-1965. Battelle Pacific Northwest Labs., Richland, Wash. (USA), 1976. URL https://www.osti.gov/biblio/7290924https://www.osti.gov/biblio/7290924
J. Pacio, M. Daubner, F. Fellmoser et al., Heat transfer experiment in a partially (internally) blocked 19-rod bundle with wire spacers cooled by LBE. Nucl. Eng. Des. 330, 225-240 (2018). doi: 10.1016/j.nucengdes.2018.01.034http://doi.org/10.1016/j.nucengdes.2018.01.034
R. Marinari, I. Di Piazza, M. Tarantino et al., Blockage fuel pin simulator experiments and simulation. Nucl. Eng. Des. 353, 110215 (2019). doi: 10.1016/j.nucengdes.2019.110215http://doi.org/10.1016/j.nucengdes.2019.110215
I.D. Piazza, F. Magugliani, M. Tarantino et al., A CFD analysis of flow blockage phenomena in ALFRED LFR demo fuel assembly. Nucl. Eng. Des. 276, 202-215 (2014). doi: 10.1016/j.nucengdes.2014.05.033http://doi.org/10.1016/j.nucengdes.2014.05.033
H.G. Kim, B. Hwange, J.K. Yung et al., Investigations of single-phase flow mixing characteristics in a wire-wrapped 37-pin bundle for a sodium-cooled fast reactor. Ann. Nucl. Energy 87, 541-546 (2016). doi: 10.1016/j.anucene.2015.09.022http://doi.org/10.1016/j.anucene.2015.09.022
A. Kaliatka, E. Uspuras, Development and testing of RBMK-1500 model for BDBA analysis employing RELAP/SCDAPSIM code. Ann. Nucl. Energy 35, 977-992 (2008). doi: 10.1016/j.anucene.2007.11.015http://doi.org/10.1016/j.anucene.2007.11.015
H.T. Mehdi, T. Saman, M.S. Seyyed et al., Forced reflood modeling in a 2× 2 rod bundle with a 90% partially blocked region. Ann. Nucl. Energy 131, 425-432 (2019). doi: 10.1016/j.anucene.2019.04.019http://doi.org/10.1016/j.anucene.2019.04.019
Z.R. Zou, Study on instability characteristics of natural circulation lead-cooled fast reactor under startup and transient operation. (Master Thesis). University of Science and Technology of China, Hefei, China, 2021. (in Chinese)
W.S. Kim, Y.-G. Kim, Y.J. Kim, A subchannel analysis code MATRA-LMR for wire wrapped LMR subassembly. Ann. Nucl. Energy 29, 303-321 (2002). doi: 10.1016/S0306-4549(01)00041-Xhttp://doi.org/10.1016/S0306-4549(01)00041-X
J.D. Macdougall, J.N. Lillington, The SABRE code for fuel rod cluster thermohydraulics. Nucl. Eng. Des. 82, 171-190 (1984). doi: 10.1016/0029-5493(84)90210-3http://doi.org/10.1016/0029-5493(84)90210-3
C.W. Stewart, C.L. Wheeler, R.J. Cena et al., COBRA-IV: The model and the method. No. BNWL-2214. Pacific Northwest Lab., Richland, WA (USA), 1977. URL https://www.osti.gov/biblio/5358588https://www.osti.gov/biblio/5358588
V. Kriventsev, A. Rineiski, W. Maschek, Application of safety analysis code SIMMER-IV to blockage accidents in FASTEF subcritical core. Ann. Nucl. Energy 64, 114-121 (2014). doi: 10.1016/j.anucene.2013.09.045http://doi.org/10.1016/j.anucene.2013.09.045
M. Di, Valentino , I. Uwe, S. Victor, Validation and application of the system code ATHLET-CD for BWR severe accident analyses. Nucl. Eng. Des. 307, 284-298 (2016). doi: 10.1016/j.nucengdes.2016.07.013http://doi.org/10.1016/j.nucengdes.2016.07.013
A.S. Ekariansyah, P.H. Endiah, S. Sudarmono, Relap5 simulation for severe accident analysis of rsg-gas reactor. Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega. 20, 23-34 (2018). doi: 10.17146/tdm.2018.20.1.4040http://doi.org/10.17146/tdm.2018.20.1.4040
S.U. Khan, U.K. Shahab, M.J. Peng, Flow blockage accident or loss of flow accident by using comparative approach of NK/TH coupling codes and RELAP5 code. Ann. Nucl. Energy 64, 311-319 (2014). doi: 10.1016/j.anucene.2013.10.010http://doi.org/10.1016/j.anucene.2013.10.010
L.Z. Wang, M. Jin, G.Y. Zhang et al., Transient thermal-hydraulic analysis for fuel assembly blockage accident by coupling CFD code with the neutron kinetics model. Ann. Nucl. Energy 137, 107138 (2020). doi: 10.1016/j.anucene.2019.107138http://doi.org/10.1016/j.anucene.2019.107138
Z.X. Gu., Q.X. Zhang, Y. Gu et al., Verification of a self-developed CFD-based multi-physics coupled code MPC-LBE for LBE-cooled reactor. Nucl. Sci. Tech. 32, 52 (2021). doi: 10.1007/s41365-021-00887-xhttp://doi.org/10.1007/s41365-021-00887-x.
L.K. Cao, G.L. Yang, and H.L. Chen. Transient sub-channel code development for lead-cooled fast reactor using the second-order upwind scheme. Prog. Nucl. Energy 110, 199-212 (2019). doi: 10.1016/j.pnucene.2018.09.022http://doi.org/10.1016/j.pnucene.2018.09.022
K.S. Ha, H.Y. Jeong, W.P. Chang et al., Development of the MATRA-LMR-FB for flow blockage analysis in a LMR. Nucl. Eng. Des. 41, 797-806 (2009). doi: 10.5516/NET.2009.41.6.797http://doi.org/10.5516/NET.2009.41.6.797
D.B. Spalding, A novel finite difference formulation for differential expressions involving both first and second derivatives. Int. J. Numer. Meth. Eng. 4, 551-559 (1972). doi: 10.1002/nme.1620040409http://doi.org/10.1002/nme.1620040409
I. E. Idelchik. Handbook of Hydraulic Resistance, Revised and Augmented. (2008). ISBN Online: 978-1-56700-340-6
J. K. Fink and L. Leibowitz, Thermodynamic and transport properties of sodium liquid and vapor. No. ANL--RE-95/2. Argonne National Lab., 1995. URL https://www.osti.gov/biblio/94649-thermodynamic-transport-properties-sodium-liquid-vaporhttps://www.osti.gov/biblio/94649-thermodynamic-transport-properties-sodium-liquid-vapor
C. Fazio, V.P. Sobolev, A. Aerts et al., Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies-2015 edition. No. NEA--7268. Organisation for Economic Co-Operation and Development, 2015. URL https://inis.iaea.org/search/search.aspx?orig_q=RN:46133907https://inis.iaea.org/search/search.aspx?orig_q=RN:46133907
P.L.T. Brian, A finite‐difference method of high‐order accuracy for the solution of three‐dimensional transient heat conduction problems. AIChE J. 7, 367-370 (1961). doi: 10.1002/aic.690070305http://doi.org/10.1002/aic.690070305
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构