1.IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
zhuxw13@pku.edu.cn
Scan for full text
Xiao-Wen Zhu, Claude Marchand, Olivier Piquet, 等. High-frequency structure design and RF stability analysis of a 4-vane radio frequency quadrupole with pi-mode stabilizer loops[J]. Nuclear Science and Techniques, 2022,33(3):34
Xiao-Wen Zhu, Claude Marchand, Olivier Piquet, et al. High-frequency structure design and RF stability analysis of a 4-vane radio frequency quadrupole with pi-mode stabilizer loops[J]. Nuclear Science and Techniques, 2022,33(3):34
Xiao-Wen Zhu, Claude Marchand, Olivier Piquet, 等. High-frequency structure design and RF stability analysis of a 4-vane radio frequency quadrupole with pi-mode stabilizer loops[J]. Nuclear Science and Techniques, 2022,33(3):34 DOI: 10.1007/s41365-022-01013-1.
Xiao-Wen Zhu, Claude Marchand, Olivier Piquet, et al. High-frequency structure design and RF stability analysis of a 4-vane radio frequency quadrupole with pi-mode stabilizer loops[J]. Nuclear Science and Techniques, 2022,33(3):34 DOI: 10.1007/s41365-022-01013-1.
Compact accelerator-based neutron source (CANS) facilities are garnering attention and play an important and expanding role in material and engineering sciences, as well as in neutron science education and training. Neutrons are produced by bombarding a low-energy proton beam onto a beryllium or lithium target. In such an accelerator-based neutron source, a radio frequency quadrupole (RFQ) is usually utilized to accelerate a high-intensity proton beam to a few MeV. This study mainly covers the high-frequency structure design optimizations of a 4-vane RFQ with Pi-mode Stabilizer Loops (PISLs) and its RF stability analysis. A 176 MHz RFQ accelerator is designed to operate at a 10% duty factor and could accelerate an 80 mA proton beam from 65 keV to 2.5 MeV within a length of 5.3 m. The adoption of PISLs ensures high RF stability, eases the operation of the accelerator, and implies less stringent alignment and machining tolerances.
Accelerator-based neutron source4-vane RFQ acceleratorPi-mode stabilizer loopsPerturbative analysisElectromagnetic designMultipacting simulation
S. Henderson, W. Abraham, A. Aleksandrov et al., The spallation neutron source accelerator system design. Nucl. Instrum. Meth. A 763, 610-673 (2014). doi: 10.1016/j.nima.2014.03.067http://doi.org/10.1016/j.nima.2014.03.067
R. Garoby, A. Vergara, H. Danared et al., The European spallation source design. Phys. Scripta 93(1), 014001 (2017). doi: 10.1088/1402-4896/aa9bffhttp://doi.org/10.1088/1402-4896/aa9bff
S. Wang, S.X. Fang, S.N. Fu et al., Introduction to the overall physics design of CSNS accelerators. Chinese Phys. C 33(S2), 1 (2009). doi: 10.1088/1674-1137/33/S2/001http://doi.org/10.1088/1674-1137/33/S2/001
L. Arnaudon, M. Magistris, M. Paoluzzi et al., Linac4 technical design report (No. CERN-AB-2006-084).
Y. Oyama, J-PARC and new era of science. Nucl. Instrum. Meth. A 562(2), 548-552 (2006). doi: 10.1016/j.nima.2006.02.139http://doi.org/10.1016/j.nima.2006.02.139
D.V. Baxter, J.M. Cameron, V.P. Derenchuk et al, Status of the low energy neutron source at Indiana University. Nucl. Instrum. Meth. B 241(1-4), 209-212 (2005). doi: 10.1016/j.nimb.2005.07.027http://doi.org/10.1016/j.nimb.2005.07.027
T. Kobayashi, S. Ikeda, Y. Otake et al., Completion of a new accelerator-driven compact neutron source prototype RANS-II for on-site use. Nucl. Instrum. Meth. A 994, 165091 (2021). doi: 10.1016/j.nima.2021.165091http://doi.org/10.1016/j.nima.2021.165091
P. Zakalek, T. Cronert, J. Baggemann et al., High-brilliance neutron source project. J. Phys. Conf. Ser. 1401(1), 012010 (2020). doi: 10.1088/1742-6596/1401/1/012010http://doi.org/10.1088/1742-6596/1401/1/012010
J. Wei, H.B. Chen, W.H. Huang et al., Compact pulsed hadron source-a university-based accelerator platform for multidisciplinary neutron and proton applications. Proceedings of PAC 2009, Vancouver, BC, Canada, TU6PFP035, 1360-1362 (2009).
X.W. Zhu, Y.R. Lu, K. Zhu et al., Four-rod RFQ beam dynamics design of PKUNIFTY upgrade. Chinese Phys. Lett. 34(1), 012901 (2017). doi: 10.1088/0256-307X/34/1/012901http://doi.org/10.1088/0256-307X/34/1/012901
A. Marchix, A. Letourneau, H.N. Tran et al., Saclay Compact Accelerator-driven Neutron Sources (SCANS). J. Phys. Conf. Ser. 1046(1), 012009 (2018). doi: 10.1088/1742-6596/1046/1/012009http://doi.org/10.1088/1742-6596/1046/1/012009
L.M. Young, An 8-meter-long coupled cavity RFQ Linac. Proceedings of LINAC 1994, Tsukuba, Japan, MO-52, 178-180 (1994).
M. Vretenar, RFQ field stabilization (No. CERN-PS-87-056-LI).
P. Balleyguier, 3D design of the IPHI RFQ cavity. Proceedings of LINAC 2000, Monterey, California, USA, THE10, 992-994 (2000).
F. Grespan, A. Pisent, A. Palmieri, Dipole stabilizers for a four-vane high current RFQ: theoretical analysis and experimental results on a real-scale model. Nucl. Instrum. Meth. A 582(2), 303-317 (2007). doi: 10.1016/j.nima.2007.08.149http://doi.org/10.1016/j.nima.2007.08.149
S.N. Fu, H.F. Ouyang, T.G. Xu, Study on the function of dipole stabilizer rods in an RFQ accelerator. Chinese Phys. C 29(3), 295-300 (2005).
J.C. Cai, Q.Z. Xing, X.L. Guan et al., Design of undercuts and dipole stabilizer rods for the CPHS RFQ accelerator. Chinese Phys. C 36(5), 464 (2012). doi: 10.1088/1674-1137/36/5/015http://doi.org/10.1088/1674-1137/36/5/015
D. Howard, H. Lancaster, Vane coupling rings: a simple technique for stabilizing a four-vane radiofrequency quadrupole structure. IEEE T Nucl. Sci. 30(2), 1446-1448 (1983). doi: 10.1109/TNS.1983.4332556http://doi.org/10.1109/TNS.1983.4332556
G.M. Arbique, B.G. Chidley, G.E. McMichael et al., CW Operation and Initial Beam Experiments with the RFQ1 Accelerator. Proceedings of LINAC 1988, Williamsburg, Virginia, USA, MO3-20, 91-93 (1988).
A. Ueno, Y. Yamazaki, New field stabilization method of a four-vane type RFQ. Nucl. Instrum. Meth. A 300(1), 15-24 (1991). doi: 10.1016/0168-9002(91)90701-Qhttp://doi.org/10.1016/0168-9002(91)90701-Q
D.R. Li, J.W. Staples, S.P. Virostek, Detailed modeling of the SNS RFQ structure with CST microwave studio. Proceedings of LINAC 2006, Knoxville, Tennessee, USA, THP008, 580-582 (2006).
G. Romanov, M. Hoff, D. Li et al, Project X RFQ EM Design. Proceedings of IPAC 2012, New Orleans, Louisiana, USA, THPPP064, 3883-3885 (2012).
C.X. Li, Y. He, X.B. Xu et al., RF structure design of the China material irradiation facility RFQ. Nucl. Instrum. Meth. A 869, 38-45 (2017). doi: 10.1016/j.nima.2017.06.045http://doi.org/10.1016/j.nima.2017.06.045
W. Ma, L. Lu, X.B. Xu et al., Design of an 81.25 MHz continuous-wave radio-frequency quadrupole accelerator for Low Energy Accelerator Facility. Nucl. Instrum. Meth. A 847, 130-135 (2017). doi: 10.1016/j.nima.2016.11.056http://doi.org/10.1016/j.nima.2016.11.056
X.W. Zhu, H. Wang, Y.R. Lu et al., 2.5 MeV CW 4-vane RFQ accelerator design for BNCT applications. Nucl. Instrum. Meth. A 883, 57-74 (2018). doi: 10.1016/j.nima.2017.11.042http://doi.org/10.1016/j.nima.2017.11.042
K.R. Crandall, T.P. Wangler, L.M. Young et al., RFQ design codes. Los Alamos National Laboratory (2005).
R. Duperrier, TOUTATIS: a radio frequency quadrupole code. Phys. Rev. ST Accel. 3(12), 124201 (2000). doi: 10.1103/PhysRevSTAB.3.124201http://doi.org/10.1103/PhysRevSTAB.3.124201
W.D. Kilpatrick, Criterion for vacuum sparking designed to include both rf and dc. REV SCI INSTRUM 28(10): 824-6 (1957). doi: 10.1063/1.1715731http://doi.org/10.1063/1.1715731
CST STUDIO SUITE, www.cst.comwww.cst.com.
A. France, F. Simoens, Theoretical analysis of a real-life RFQ using a 4-wire line model and the theory of differential operators. Proceedings of EPAC 2002, Paris, France, THPLE035, 957-959 (2002).
A. Palmieri, A. Pisent, F. Grespan, 3D aspects of the IFMIF-EVEDA RFQ: design and optimization of the vacuum grids, of the slug tuners and of the end cell, Proceedings of LINAC 2010, Tsukuba, Japan, TUP055, 533-535 (2010).
D. Schrage, L. Young, P. Roybal et al., CW RFQ fabrication and engineering. Proceedings of LINAC 1998, Illinois, USA, WE1003, 679-683 (1998).
A. Pisent, RFQ for CW applications. Proceedings of LINAC 2010, Tsukuba, Japan, TU301, 372-376 (2010).
M.A. Furman, M.T.F. Pivi, Probabilistic model for the simulation of secondary electron emission. Phys. Rev. ST Accel. Beams 5(12), 124404 (2002). doi: 10.1103/PhysRevSTAB.5.124404http://doi.org/10.1103/PhysRevSTAB.5.124404
G. Romanov, P. Berrutti, T. Khabiboulline, Simulation of multipacting in SC low beta cavities at FNAL. Proceedings of IPAC 2015, Richmond, VA, USA, MOPMA018, 579-581 (2015).
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构