1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
* xiaxiaobin@sinap.ac.cn
Scan for full text
Decomposition of oil cleaning agents from nuclear power plants by supercritical water oxidation[J]. 核技术(英文版), 2022,33(4):47
Shi-Bin Li, Xiao-Bin Xia, Qiang Qin, et al. Decomposition of oil cleaning agents from nuclear power plants by supercritical water oxidation[J]. Nuclear Science and Techniques, 2022,33(4):47
Decomposition of oil cleaning agents from nuclear power plants by supercritical water oxidation[J]. 核技术(英文版), 2022,33(4):47 DOI: 10.1007/s41365-022-01032-y.
Shi-Bin Li, Xiao-Bin Xia, Qiang Qin, et al. Decomposition of oil cleaning agents from nuclear power plants by supercritical water oxidation[J]. Nuclear Science and Techniques, 2022,33(4):47 DOI: 10.1007/s41365-022-01032-y.
Oil cleaning agents generated from nuclear power plants (NPPs) are radioactive organic liquid wastes. To date, because there are no satisfactory industrial treatment measures, these wastes can only be stored for a long time. In this work, the optimization for the supercritical water oxidation (SCWO) of the spent organic solvent was investigated. The main process parameters of DURSET (oil cleaning agent) SCWO, such as temperature, reaction time, and excess oxygen coefficient, were optimized using response surface methodology (RSM), and a quadratic polynomial model was obtained. The determination coefficient (,R,2,) of the model is 0.9812, indicating that the model is reliable. The optimized process conditions were at 515℃, 66 s, and an excess oxygen coefficient of 211%. Under these conditions, the chemical oxygen demand (COD) removal of organic matter could reach 99.5%. The temperature was found to be the main factor affecting the SCWO process. Ketones and benzene-based compounds may be the main intermediates in DURSET SCWO. This work provides basic data for the industrialization of the degradation of spent organic solvents from NPP using SCWO technology.
Supercritical water oxidationOil cleaning agentNuclear power plantsResponse surface methodology
R. Rahman, H.A. Ibrahium, Y.T. Hung, Liquid radioactive wastes treatment: A review. Water 3(4),551-565 (2011). doi: 10.3390/w3020551http://doi.org/10.3390/w3020551
M. Mabrouk, F. Lemont, J.M. Baronne, Incineration of radioactive organic liquid wastes by underwater thermal plasma. J. Phys. Conf. Ser. 406, 012002 (2012). doi: 10.1088/1742-6596/406/1/012002http://doi.org/10.1088/1742-6596/406/1/012002
J. Deckers, Incineration and plasma processes and technology for treatment and conditioning of radioactive waste. Handbook of Advanced Radioactive Waste Conditioning Technologies 2011, 43-66 (2011). doi: 10.1533/9780857090959.1.43http://doi.org/10.1533/9780857090959.1.43
V. Cuccia, C.B. Freire, A.C.Q. Ladeira, Radwaste oil immobilization in geopolymer after non-destructive treatment. Prog. Nucl. Energ. 122, 103246 (2020). doi: 10.1016/j.pnucene.2020.103246http://doi.org/10.1016/j.pnucene.2020.103246
W. Zhang, J. Wang, Leaching performance of uranium from the cement solidified matrices containing spent radioactive organic solvent. Ann. Nucl. Energy, 101, 31-35 (2017). doi: 10.1016/j.anucene.2016.09.055http://doi.org/10.1016/j.anucene.2016.09.055
W.A. Chao, B. Gya, B. Jwa, Fenton oxidative degradation of spent organic solvents from nuclear fuel reprocessing plant. Prog. Nucl. Energ. 130, 103563 (2020). doi: 10.1016/j.pnucene.2020.103563http://doi.org/10.1016/j.pnucene.2020.103563
M. Takai, M. Aoyama, O. Nakazawa et al., Steam reforming: alternative pyrolytic technology to incineration for volume reduction and stabilization of low-level radioactive organic liquid wastes. J. Phys. Chem. Solids 66(2-4), 694-696 (2005). doi: 10.1016/j.jpcs.2004.07.025http://doi.org/10.1016/j.jpcs.2004.07.025
U. Galla, P. Kritzer, J. Bringmann et al., Process for total degradation of organic wastes by mediated electrooxidation. Chem. Eng. Technol. 23(3), 230-233 (2000). doi: 10.1002/(sici)1521-4125(200003)23:3<230::aid-ceat230>3.0.co;2-3http://doi.org/10.1002/(sici)1521-4125(200003)23:3<230::aid-ceat230>3.0.co;2-3
Q. Wu, X. Hu, P.L. Yue, Kinetics study on catalytic wet air oxidation of phenol. Chem. Eng. Sci. 58(3), 923-928 (2003). doi: 10.1016/S0009-2509(02)00628-0http://doi.org/10.1016/S0009-2509(02)00628-0
P.E. Savage, Organic chemical reactions in supercritical water. Chem. Rev. 99(2), 603-622 (1999). doi: 10.1021/cr9700989http://doi.org/10.1021/cr9700989
Q. Qin, X.B. Xia, S.B. Li et al., Supercritical water oxidation and its application in radioactive waste treatment. Ind. Water Treat. p. 1-16 (2021). doi: 10.19965/j.cnki.iwt.2021-0855http://doi.org/10.19965/j.cnki.iwt.2021-0855 (in Chinese)
P. Kritzer, E. Dinjus, An assessment of supercritical water oxidation (SCWO): Existing problems, possible solutions and new reactor concepts. Chem. Eng. J. 83(3), 207-214 (2001). doi: 10.1016/S1385-8947(00)00255-2http://doi.org/10.1016/S1385-8947(00)00255-2
Q. Qin, S. Wang, H.Y. Wang et al., Treatment of radioactive spent extraction solvent by supercritical water oxidation. J. Radioanal. Nucl. Ch. 314(2), 1169-1176 (2017). doi: 10.1007/s10967-017-5445-1http://doi.org/10.1007/s10967-017-5445-1
T.Z. Ma, T.T. Hu, D.D. Jiang et al., Treatment of penicillin with supercritical water oxidation: experimental study of combined ReaxFF molecular dynamics. Korean J. Chem. Eng. 35(4), 900-908 (2018). doi: 10.1007/s11814-017-0341-5http://doi.org/10.1007/s11814-017-0341-5
S.V.P. Mylapilli, S.N. Reddy, Sub and supercritical water oxidation of pharmaceutical wastewater. J. Environ. Chem. Eng. 7(3), 103165 (2019). doi: 10.1016/j.jece.2019.103165http://doi.org/10.1016/j.jece.2019.103165
J. Li, S. Wang, Y. Li et al., Supercritical water oxidation of semi-coke wastewater: Effects of operating parameters, reaction mechanism and process enhancement. Sci. Total Environ. 710, 134396 (2020). doi: 10.1016/j.scitotenv.2019.134396http://doi.org/10.1016/j.scitotenv.2019.134396
S.J. Chang, Y.C. Liu, Degradation mechanism of 2,4,6-trinitrotoluene in supercritical water oxidation. J. Environ. Sci. 19(12), 1430-1435 (2007). doi: 10.1016/S1001-0742(07)60233-2http://doi.org/10.1016/S1001-0742(07)60233-2
Y.M. Gong, Y. Guo, J.D. Sheehan et al., Oxidative degradation of landfill leachate by catalysis of CeMnOx/TiO2 in supercritical water: mechanism and kinetic study. Chem. Eng. J. 331, 578-586 (2018). doi: 10.1016/j.cej.2017.08.122http://doi.org/10.1016/j.cej.2017.08.122
J. Li, S. Wang, Y. Li et al., Supercritical water oxidation of glyphosate wastewater. Chem. Eng. Res. Des. 168, 122-134 (2021). doi: 10.1016/j.cherd.2021.02.002http://doi.org/10.1016/j.cherd.2021.02.002
P.A. Marrone, Supercritical water oxidation-current status of full-scale commercial activity for waste destruction. J. Supercrit. Fluid. 79, 283-288 (2013). doi: 10.1016/j.supflu.2012.12.020http://doi.org/10.1016/j.supflu.2012.12.020
T. Xu, S. Wang, Y. Li et al., Review of the destruction of organic radioactive wastes by supercritical water oxidation. Sci. Total Environ. 799, 149396 (2021). doi: 10.1016/j.scitotenv.2021.149396http://doi.org/10.1016/j.scitotenv.2021.149396
T.T. Xu, S.Z. Wang, Y.H. Li et al., Optimization and mechanism study on destruction of the simulated waste ion-exchange resin from the nuclear industry in supercritical water. Ind. Eng. Chem. Res. 59(40), 18269-18279 (2020). doi: 10.1021/acs.iecr.0c02732http://doi.org/10.1021/acs.iecr.0c02732
M. Kosari, M. Golmohammadi, J. Towfighi et al., Decomposition of tributhyl phosphate at supercritical water oxidation conditions: Non-catalytic, catalytic, and kinetic reaction studies. J. Supercrit. Fluid. 133, 103-113 (2018). doi: 10.1016/j.supflu.2017.09.012http://doi.org/10.1016/j.supflu.2017.09.012
M. Golmohammadi, S.J. Ahmadi, J. Towfighi, Catalytic supercritical water destructive oxidation of tributyl phosphate: Study on the effect of operational parameters. J. Supercrit. Fluid. 140, 32-40 (2018). doi: 10.1016/j.supflu.2018.05.022http://doi.org/10.1016/j.supflu.2018.05.022
A. Leybros, A. Roubaud, P. Guichardon et al., Supercritical water oxidation of ion exchange resins: degradation mechanisms. Process Saf. Environ. 88(3), 213-222 (2010). doi: 10.1016/j.psep.2009.11.001http://doi.org/10.1016/j.psep.2009.11.001
L. Wang, L. Yi, G. Wang et al., Experimental investigation on gasification of cationic ion exchange resin used in nuclear power plants by supercritical water. J. Hazard. Mater. 419, 126437 (2021). doi: 10.1016/j.jhazmat.2021.126437http://doi.org/10.1016/j.jhazmat.2021.126437
S. Wang, Q. Qin, K. Chen et al., Supercritical water oxidation of spent extraction solvent simulants. Nucl. Sci. Tech. 26(3), 030601 (2015). doi: 10.13538/j.1001-8042/nst.26.030601http://doi.org/10.13538/j.1001-8042/nst.26.030601
Q. Qin, S. Wang, H. Peng et al., Solubility of inorganic salt in supercritical water. J. Radioanal. Nucl. Ch. 317(2), 947-957 (2018). doi: 10.1007/s10967-018-5939-5http://doi.org/10.1007/s10967-018-5939-5
S.B. Li, X.B. Xia, Q. Qin et al., Experimental study on supercritical water oxidation of lubricating oil from nuclear power plant. Nucl. Tech. 44(07), 91-98 (2021). doi: 10.11889/j.0253-3219.2021.hjs.44.070603http://doi.org/10.11889/j.0253-3219.2021.hjs.44.070603 (in Chinese)
R. Rahman, H.A. Ibrahium, Y.T. Hung, Liquid radioactive wastes treatment: A review. Water 3(4), 551-565 (2011). doi: 10.3390/w3020551http://doi.org/10.3390/w3020551
X.R. Huang, Application of response surface method on biological process optimization. Hunan University 2011. https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201301&filename=1012492463.nhhttps://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201301&filename=1012492463.nh (in Chinese)
M. Mäkelä, Experimental design and response surface methodology in energy applications: A tutorial review. Energy Convers. Manage. 151, 630-640 (2017). doi: 10.1016/j.enconman.2017.09.021http://doi.org/10.1016/j.enconman.2017.09.021
C.M. Huelsman, P.E. Savage, Intermediates and kinetics for phenol gasification in supercritical water. Phys. Chem. Chem. Phys. 14(8), 2900-2910 (2012). doi: 10.1039/c2cp23910hhttp://doi.org/10.1039/c2cp23910h
B.W. Yang, Z.W. Cheng, X.P. Gao et al., Decomposition of 15 aromatic compounds in supercritical water oxidation. Chemosphere 218, 384-90 (2019). doi: 10.1016/j.chemosphere.2018.11.048http://doi.org/10.1016/j.chemosphere.2018.11.048
B. Al-Duri, L. Pinto, N.H. Ashraf-Ball et al., Thermal abatement of nitrogen-containing hydrocarbons by noncatalytic supercritical water oxidation (SCWO). J. Mater. Sci. 43(4), 1421-1428 (2008). doi: 10.1007/s10853-007-2285-3http://doi.org/10.1007/s10853-007-2285-3
N. Wei, D.H. Xu, B.T. Hao et al., Chemical reactions of organic compounds in supercritical water gasification and oxidation. Water Res. 190, 116634 (2021). doi: 10.1016/j.watres.2020.116634http://doi.org/10.1016/j.watres.2020.116634
W. Bühler, E. Dinjus, H.J. Ederer et al., Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water. J. Supercrit. Fluid. 22(1), 37-53 (2002). doi: 10.1016/S0896-8446(01)00105-Xhttp://doi.org/10.1016/S0896-8446(01)00105-X
L. Yu, Y.H. Chen, F. He, catalytic supercritical water oxidation of oily wastewater. Chem. Tech. Fuels Oil+ 51(1), 87-92 (2015). doi: 10.1007/s10553-015-0578-9http://doi.org/10.1007/s10553-015-0578-9
Z. Chen, Z.L. Chen, F.J. Yin et al., Supercritical water oxidation of oil-based drill cuttings. J. Hazard. Mater. 332, 205-213 (2017). doi: 10.1016/j.jhazmat.2017.03.001http://doi.org/10.1016/j.jhazmat.2017.03.001
Y.M. Gong, Y. Guo, S.Z. Wang et al., Supercritical water oxidation of Quinazoline: effects of conversion parameters and reaction mechanism. Water Res. 100, 116-125 (2016). doi: 10.1016/j.watres.2016.05.001http://doi.org/10.1016/j.watres.2016.05.001
Y. Gong, S. Wang, H. Xu et al., Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology. Waste Manage. 43, 343-352 (2015). doi: 10.1016/j.wasman.2015.04.013http://doi.org/10.1016/j.wasman.2015.04.013
Wahyudiono , M. Sasaki, M. Goto, Kinetic study for liquefaction of tar in sub- and supercritical water. Polym. Degrad. Stabil. 93(6), 1194-1204 (2008). doi: 10.1016/j.polymdegradstab.2008.02.006http://doi.org/10.1016/j.polymdegradstab.2008.02.006
A.G. Chakinala, S. Kumar, A. Kruse et al., Supercritical water gasification of organic acids and alcohols: The effect of chain length. J. Supercrit. Fluid. 74, 8-21 (2013). doi: 10.1016/j.supflu.2012.11.013http://doi.org/10.1016/j.supflu.2012.11.013
M. Hosseinpour, M. Soltani, A. Noofeli et al., An optimization study on heavy oil upgrading in supercritical water through the response surface methodology (RSM). Fuel 271, 117618 (2020). doi: 10.1016/j.fuel.2020.117618http://doi.org/10.1016/j.fuel.2020.117618
J. Zhang, J. Lu, S. Chen et al., Experimental and kinetics study on oxidation of three-component in supercritical water. Can. J. Chem. Eng. 97(6), 1871-1880 (2019). doi: 10.1002/cjce.23454http://doi.org/10.1002/cjce.23454
N. Aghamohammadi, H.B. Aziz, M.H. Isa et al., Powdered activated carbon augmented activated sludge process for treatment of semi-aerobic landfill leachate using response surface methodology. Bioresource Technol. 98(18), 3570-3578 (2007). doi: 10.1016/j.biortech.2006.11.037http://doi.org/10.1016/j.biortech.2006.11.037
M. Ravber, Ž. Knez, M. Škerget, Optimization of hydrolysis of rutin in subcritical water using response surface methodology. J. Supercrit. Fluid. 104, 145-152 (2015). doi: 10.1016/j.supflu.2015.05.028http://doi.org/10.1016/j.supflu.2015.05.028
Z. Yan, B. Örmeci, Y. Han et al., Supercritical water oxidation for treatment of wastewater sludge and recalcitrant organic contaminants. Environ. Technol. Inno. 18, 100728 (2020). doi: 10.1016/j.eti.2020.100728http://doi.org/10.1016/j.eti.2020.100728
S. Gopalan, P.E. Savage, A reaction network model for phenol oxidation in supercritical water. Aiche J. 41(8), 1864-1873 (1995). doi: 10.1002/aic.690410805http://doi.org/10.1002/aic.690410805
X.Q. Dong, Z.D. Gan, X.L. Lu et al., Study on catalytic and non-catalytic supercritical water oxidation of p-nitrophenol wastewater. Chem. Eng. J. 277, 30-39 (2015). doi: 10.1016/j.cej.2015.04.134http://doi.org/10.1016/j.cej.2015.04.134
S. Xu, I. Butler, I. Gkalp et al., Evolution of naphthalene and its intermediates during oxidation in subcritical/supercritical water. P. Combust. Inst. 33(2), 3185-3194 (2011). doi: 10.1016/j.proci.2010.09.010http://doi.org/10.1016/j.proci.2010.09.010
Y.B. She, J.H. Deng, L. Zhang et al., Catalytic oxidation of cyclohexane by O2 as an oxidant. Prog. Chem. 30(01), 124-136 (2018). doi: 10.7536/PC171102http://doi.org/10.7536/PC171102
N.H. Attanayake, M. Tang, Performance and pathways of electrochemical cyclohexane oxidation. Curr. Opin. Electroche. 30, 100791 (2021). doi: 10.1016/j.coelec.2021.100791http://doi.org/10.1016/j.coelec.2021.100791
G.J. Dileo, M.E. Neff, P.E. Savage, Gasification of guaiacol and phenol in supercritical water. Energ. Fuel. 21(4), 2340-2345 (2007). doi: 10.1021/ef070056fhttp://doi.org/10.1021/ef070056f
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构