1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
4.Shanghai University, Shanghai 200444, China
5.Tsinghua University, Beijing 100084, China
liuxinzhong@sinap.ac.cn
tiansq@sari.ac.cn
zhaozhentang@sinap.ac.cn
Scan for full text
Xin-Zhong Liu, Shun-Qiang Tian, Xu Wu, 等. Feedforward compensation of the insertion devices effects in the SSRF storage ring[J]. Nuclear Science and Techniques, 2022,33(6):70
Xin-Zhong Liu, Shun-Qiang Tian, Xu Wu, et al. Feedforward compensation of the insertion devices effects in the SSRF storage ring[J]. Nuclear Science and Techniques, 2022,33(6):70
Xin-Zhong Liu, Shun-Qiang Tian, Xu Wu, 等. Feedforward compensation of the insertion devices effects in the SSRF storage ring[J]. Nuclear Science and Techniques, 2022,33(6):70 DOI: 10.1007/s41365-022-01052-8.
Xin-Zhong Liu, Shun-Qiang Tian, Xu Wu, et al. Feedforward compensation of the insertion devices effects in the SSRF storage ring[J]. Nuclear Science and Techniques, 2022,33(6):70 DOI: 10.1007/s41365-022-01052-8.
The lattice of the Shanghai Synchrotron Radiation Facility (SSRF) storage ring was upgraded in the Phase-II beamline project, and thus far, 18 insertion devices (IDs) have been installed. The IDs cause closed-orbit distortions, tune drift, and coupling distortions in the SSRF storage ring, all of which are significant issues that require solutions. In this study, an ID orbit feedforward compensation system based on a response matrix using corrector coils was developed, and it was applied to all commissioned IDs in the SSRF storage ring. After correction, the maximum ID-induced horizontal and vertical orbit distortions were less than 5.0 μm and 3.5 μm, respectively. Some interesting phenomena observed during the measurement process were explained. Additionally, optical and coupling feedforward systems were developed using quadrupole and skew quadrupole magnets installed on the front and back of elliptically polarizing undulators (EPUs). Moreover, over nearly four months of operation, the developed strategy delivered a satisfactory performance in the SSRF storage ring.
Shanghai Synchrotron Radiation Facility (SSRF)Insertion devices (IDs)Closed-orbit distortionTune shiftCouplingFeedforward
H.J. Xu, Z.T. Zhao, Current status and progresses of SSRF project. Nucl. Sci. Tech. 19, 1-6 (2008). doi: 10.1016/S1001-8042(08)60013-5http://doi.org/10.1016/S1001-8042(08)60013-5
S.Q. Shen, S. Q. Tian, Z.T. Zhao et al., Nonlinear optimization for longitudinal beam injection in diffraction-limited synchrotron light sources. High. Pow. Lase. Part. Beam. 31, 88-93 (2019). doi: 10.11884/HPLPB201931.190196http://doi.org/10.11884/HPLPB201931.190196
X. Z. Liu, S. Q. Tian, X. Wu et al., Intra-beam scattering and beam lifetime in a candidate lattice of the soft X-ray diffraction-limited storage ring for the upgraded SSRF. Nucl. Sci. Tech. 32, 83 (2021) doi: 10.1007/s41365-021-00913-yhttp://doi.org/10.1007/s41365-021-00913-y
L.X. Yin, R.Z. Tai, Z.T. Zhao et al., Progress and future of Shanghai Synchrotron Radiation Facility. Jour. Vac. Soc. 59, 198-204 (2016). doi: 10.3131/jvsj2.59.198http://doi.org/10.3131/jvsj2.59.198
S.Q. Tian, B.C. Jiang, Y.B. Leng et al., Double-mini-β_y optics design in the SSRF storage ring. Nucl. Sci. Tech. 25, 030101 (2014). doi: 10.13538/j.1001-8042/nst.25.030101http://doi.org/10.13538/j.1001-8042/nst.25.030101
S.Q. Tian, B.C. Jiang, Q.G. Zhou et al., Lattice design and optimization of the SSRF storage ring with super-bends. Nucl. Sci. Tech. 25, 010102 (2014). doi: 10.13538/j.1001-8042/nst.25.010102http://doi.org/10.13538/j.1001-8042/nst.25.010102
Q. L. Zhang, S.Q. Tian, B.C. Jiang et al., Beam dynamics of the superconducting wiggler on the SSRF storage ring. Chin. Phys. C. 40, 037001 (2016). https://iopscience.iop.org/article/10.1088/1674-1137/40/3/037001https://iopscience.iop.org/article/10.1088/1674-1137/40/3/037001
J. Bahrdt, E. Gluskin, Cryogenic permanent magnet and superconducting undulators. Nucl. Instrum. Meth. Phy. Res. Sect. A. 907, 149-168 (2018) doi: 10.1016/j.nima.2018.03.069http://doi.org/10.1016/j.nima.2018.03.069
J. C. Huang, H. Kitamura, C. K. Yang, et al. Challenges of in-vacuum and cryogenic permanent magnet undulator technologies. Phys. Rev. Acce. Beams. 20, 064801 (2017). doi: 10.1103/PhysRevAccelBeams.20.064801http://doi.org/10.1103/PhysRevAccelBeams.20.064801
W. Zhang, H. Wang, Y. He et al., Magnetic design and measurement results of a CPMU prototype at SSRF. IEEE Trans. Appl. Supe. 26, 1-4 (2016). https://ieeexplore.ieee.org/document/7426785https://ieeexplore.ieee.org/document/7426785
M. Sigrist, C. Baribeau, T. M. Pedersen, Photon polarisation modelling of APPLE-II EPUs. In Proceedings of EPAC 2019, Melbourne, Australia, 19-24 May (2019). doi: 10.18429/JACoW-IPAC2019-TUPRB005http://doi.org/10.18429/JACoW-IPAC2019-TUPRB005
B.C. Jiang, J. Hou, C.X. Yin et al., Status of the SSRF fast orbit feedback system. In Proceedings of IPAC2012, New Orleans, Louisiana, USA, 20-25 May (2012). https://accelconf.web.cern.ch/IPAC2012/papers/weppp065.pdfhttps://accelconf.web.cern.ch/IPAC2012/papers/weppp065.pdf
J. Hou, S.Q. Tian, M.Z. Zhang et al., Studies of closed orbit correction and slow orbit feedback for the SSRF storage ring. Chin. Phys. C. 33, 145 (2009). https://iopscience.iop.org/article/10.1088/1674-1137/33/2/013/metahttps://iopscience.iop.org/article/10.1088/1674-1137/33/2/013/meta
B. Singh, R. Bartolini, R. Fielder et al., Beam dynamics effect of insertion devices at Diamond storage ring. In Proceedings of IPAC 2010, Kyoto, Japan,23-28 May (2010). https://accelconf.web.cern.ch/IPAC10/papers/thpe088.pdfhttps://accelconf.web.cern.ch/IPAC10/papers/thpe088.pdf
A. Thiel, M. Ebbeni, H. Tarawneh, Apple II insertion devices made at MAX IV. In Proceedings of MEDSI 2018, Paris, France. 18-26 June (2018). doi: 10.18429/JACoW-MEDSI2018-TUOPMA04http://doi.org/10.18429/JACoW-MEDSI2018-TUOPMA04
Y. Yang, H. Lu, S. Sun et al., Field error correction considerations of cryogenic permanent magnet undulator (CPMU) for high energy photon source test facility (HEPS-TF). In Proceedings of EPAC 2016, Busan, Korea. 12-16 May (2016). https://accelconf.web.cern.ch/ipac2016/papers/thpow041.pdfhttps://accelconf.web.cern.ch/ipac2016/papers/thpow041.pdf
Y.W Yang, X.Y Li, H. Lu, A practical design and field errors analysis of a merged APPLE–Knot undulator for High Energy Photon Source, Nucl. Instrum. Meth. Phy. Res. Sect. A.1011, 165579 (2021). doi: 10.1016/j.nima.2021.165579http://doi.org/10.1016/j.nima.2021.165579
M. Zhang, Q.G. Zhou, Study of the beam tune-shift effects for DEPU at SSRF. IEEE Tran. App. Sup. 22, 4002203-4002203 (2012). https://www.researchgate.net/publication/254060683https://www.researchgate.net/publication/254060683
M.Z. Zhang, K. Wang, Q.L. Zhang et al., Compensations of double elliptical polarization undulator effects on the SSRF storage ring. High. Pow. Lase. Part. Beam. 29, 075103 (2017). doi: 10.11884/HPLPB201729.170014http://doi.org/10.11884/HPLPB201729.170014
S. Shin. New era of synchrotron radiation: fourth-generation storage ring. AAP. Bull. 31, 1-16 (2021). doi: 10.1007/s43673-021-00021-4http://doi.org/10.1007/s43673-021-00021-4
G.B. Zhao, Y.R. Xian, Y.B. Leng et al., Development of button-type pickup for SSRF ring. Nucl. Sci. Tech. 25, 060103 (2014). doi: 10.13538/j.1001-8042/nst.25.060103http://doi.org/10.13538/j.1001-8042/nst.25.060103
X. Wu, S.Q. Tian, X.Z. Liu et al., Design and commissioning of the new SSRF storage ring lattice with asymmetric optics. Nucl. Inst. Meth. Phy. Res. Sect. A. 1025,166098 (2022). doi: 10.1016/j.nima.2021.166098http://doi.org/10.1016/j.nima.2021.166098
J. Safranek, Experimental determination of storage ring optics using orbit response measurements. Nucl. Inst. Meth. Phy. Res. Sect. A. 388, 27-36 (1997). doi: 10.1016/S0168-9002(97)00309-4http://doi.org/10.1016/S0168-9002(97)00309-4
C. Liu, R. Hulsart, A. Marusic et al., Weighted SVD algorithm for close-orbit correction and 10 Hz feedback in RHIC. In Proceedings of IPAC 2012, New Orleans, Louisiana, USA, 20-25 May (2012). https://accelconf.web.cern.ch/IPAC2012/papers/weppp084.pdfhttps://accelconf.web.cern.ch/IPAC2012/papers/weppp084.pdf
W. Xu, S.Q. Tian, Q.L. Zhang et al., Operation stability improvement for synchrotron light sources by tune feedback system. High. Pow. Lase. Part. Beam. 32, 045107 (2020). doi: 10.11884/HPLPB202032.190270http://doi.org/10.11884/HPLPB202032.190270
J. Safranek, T. Portmann, A. Terebilo et al., Matlab-Based LOCO, in Proceedings of EPAC 2002, Paris, France, 3-7 June (2002). doi: 10.2172/800082http://doi.org/10.2172/800082
M.Z. Zhang, J. Hou, H.H. Li et al., Coupling measurement and correction at the SSRF storage ring. Sci. Chin. Phys. 54, 201-206 (2011). doi: 10.1007/s11433-011-4513-8http://doi.org/10.1007/s11433-011-4513-8
M.Z. Zhang, K. Wang, Q.L. Zhang et al., Compensations of double elliptical polarization undulator effects on the SSRF storage ring. High. Pow. Lase. Part. Beam. 29, 075103 (2017).
0
浏览量
3
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构