1.Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
ljy@szu.edu.cn
Scan for full text
Hou-Zhi Cai, Qiu-Yan Luo, Kai-Xuan Lin, 等. Development of an ultrafast detector and demonstration of its oscillographic application[J]. Nuclear Science and Techniques, 2022,33(6):72
Hou-Zhi Cai, Qiu-Yan Luo, Kai-Xuan Lin, et al. Development of an ultrafast detector and demonstration of its oscillographic application[J]. Nuclear Science and Techniques, 2022,33(6):72
Hou-Zhi Cai, Qiu-Yan Luo, Kai-Xuan Lin, 等. Development of an ultrafast detector and demonstration of its oscillographic application[J]. Nuclear Science and Techniques, 2022,33(6):72 DOI: 10.1007/s41365-022-01055-5.
Hou-Zhi Cai, Qiu-Yan Luo, Kai-Xuan Lin, et al. Development of an ultrafast detector and demonstration of its oscillographic application[J]. Nuclear Science and Techniques, 2022,33(6):72 DOI: 10.1007/s41365-022-01055-5.
A dilation X-ray detector (DIXD) based on time dilation and microchannel plate (MCP) gated technology has been reported. The DIXD passes a driving pulse along the transmission photocathode (PC) to obtain a dilated electron signal and finally achieves a high time resolution of 12 ps. Furthermore, the waveform of the PC driving pulse can be obtained using the DIXD, and a DIXD oscillographic function can be obtained. An experiment is presented to demonstrate the DIXD oscilloscope. The waveform of the PC driving pulse from points ,t,1, to ,t,12, is achieved by the DIXD. The waveform agrees well with that measured by a high-speed oscilloscope with a difference of less than 6%. The maximum theoretical bandwidth of the DIXD oscilloscope is theoretically studied. The bandwidth is limited by the potential difference between the PC and mesh. When the potential difference is 3.4 kV, the theoretical limiting bandwidth is 1000 GHz. The bandwidth increases with an increase in the potential difference.
Inertial confinement fusionUltrafast diagnosisDilation X-ray detectorX-ray framing cameraMicrochannel plate
V. Gopalaswamy, R. Betti, J. P. Knauer et al., Tripled yield in direct-drive laser fusion through statistical modelling. Nature 565, 581-586 (2019). doi: 10.1038/s41586-019-0877-0http://doi.org/10.1038/s41586-019-0877-0
G. N. Hall, C. M. Krauland, M. S. Schollmeier et al., The Crystal Backlighter Imager: A spherically bent crystal imager for radiography on the National Ignition Facility. Rev. Sci. Instrum. 90, 013702 (2019). doi: 10.1063/1.5058700http://doi.org/10.1063/1.5058700
Q. Q. Wang, Z. R. Cao, T. Chen et al., Theoretical study on temporal and spatial performance of magnetic solenoid used in dilation x-ray imager. Rev. Sci. Instrum. 91, 073302 (2020). doi: 10.1063/1.5133395http://doi.org/10.1063/1.5133395
E. Aboud, S. Ahn, G. V. Rogachev et al., Modular next generation fast-neutron detector for portal monitoring. Nucl. Sci. Tech. 33, 13 (2022). doi: 10.1007/s41365-022-00990-7http://doi.org/10.1007/s41365-022-00990-7.
L. Yang, H. R. Cao, J. L. Zhao et al., Development of a wide-range and fast-response digitizing pulse signal acquisition and processing system for neutron flux monitoring on EAST. Nucl. Sci. Tech. 33, 35 (2022). doi: 10.1007/s41365-022-01016-yhttp://doi.org/10.1007/s41365-022-01016-y.
Z. Yuan, T. Chen, Z. W. Yang et al., Method to measure the temporal resolution of x-ray framing camera. Opt. Eng. 57, 074101 (2018). doi: 10.1117/1.OE.57.7.074101http://doi.org/10.1117/1.OE.57.7.074101
P. Hu, Z. G. Ma, K. Zhao et al., Development of gated fiber detectors for laser-induced strong electromagnetic pulse environments. Nucl. Sci. Tech. 32, 58 (2021). doi: 10.1007/s41365-021-00898-8http://doi.org/10.1007/s41365-021-00898-8.
G. L. Gao, K. He, J. S. Tian et al., Ultrafast all-optical solid-state framing camera with picosecond temporal resolution. Opt. Express 25, 8721-8729 (2017). doi: 10.1364/OE.25.008721http://doi.org/10.1364/OE.25.008721
J. H. Liu, Z. Ge, Q. Wang et al., Electrostatic-lenses position-sensitive TOF MCP detector for beam diagnostics and new scheme for mass measurements at HIAF. Nucl. Sci. Tech. 30, 152 (2019). doi: 10.1007/s41365-019-0676-1http://doi.org/10.1007/s41365-019-0676-1.
J A Frenje, Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas. Plasma Phys. Contr. F 62, 023001 (2020). doi: 10.1088/1361-6587/ab5137http://doi.org/10.1088/1361-6587/ab5137
S. E. Jiang, F. Wang, Y. K. Ding et al., Experimental progress of inertial confinement fusion based at the ShenGuang-III laser facility in China. Nucl. Fusion. 59, 032006 (2019). doi: 10.1088/1741-4326/aabdb6http://doi.org/10.1088/1741-4326/aabdb6
S. R. Nagel, A. C. Carpenter, J. Park et al., The dilation aided single–line–of–sight x–ray camera for the National Ignition Facility: Characterization and fielding. Rev. Sci. Instrum. 89, 10G125 (2018). doi: 10.1063/1.5038671http://doi.org/10.1063/1.5038671
W. Theobald, C. Sorce, M. Bedzyk et al., The single-line-of-sight, time-resolved x-ray imager diagnostic on OMEGA. Rev. Sci. Instrum. 89, 10G117 (2018). doi: 10.1063/1.5036767http://doi.org/10.1063/1.5036767
J. D. Kilkenny, High speed proximity focused X-ray cameras. Laser Part. Beams. 9, 49-69 (1991). doi: 10.1017/S0263034600002330http://doi.org/10.1017/S0263034600002330
P. M. Bell, J. D. Kilkenny, R. L. Hanks et al., Measurements with a 35 psec gate time microchannel plate camera. Proc. SPIE. 1346, 456-464 (1991). doi: 10.1117/12.23371http://doi.org/10.1117/12.23371
S. R. Nagel, L. R. Benedetti, D. K. Bradley et al., Comparison of implosion core metrics: A 10 ps dilation X-ray imager vs a 100 ps gated microchannel plate. Rev. Sci. Instrum. 87, 11E311 (2016). doi: 10.1063/1.4959917http://doi.org/10.1063/1.4959917
K. Engelhorn, T. J. Hilsabeck, J. Kilkenny et al., Sub-nanosecond single line-of-sight (SLOS) x-ray imagers. Rev. Sci. Instrum. 89, 10G123 (2018). doi: 10.1063/1.5039648http://doi.org/10.1063/1.5039648
T. J. Hilsabeck, J. D. Hares, J. D. Kilkenny et al., Pulse-dilation enhanced gated optical imager with 5 ps resolution. Rev. Sci. Instrum. 81, 10E317 (2010). doi: 10.1063/1.3479111http://doi.org/10.1063/1.3479111
S. R. Nagel, T. J. Hilsabeck, P. M. Bell et al., Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager. Rev. Sci. Instrum. 85, 11E504 (2014). doi: 10.1063/1.4890396http://doi.org/10.1063/1.4890396
S. R. Nagel, T. J. Hilsabeck, P. M. Bell et al., Dilation x-ray imager a new/faster gated x-ray imager for the NIF. Rev. Sci. Instrum. 83, 10E116 (2012). doi: 10.1063/1.4732849http://doi.org/10.1063/1.4732849
R. D. Prosser, Electron-dispersion technique for observation of fast transient signals. J. Phys. E: Sci. Instrum. 9, 57-59 (1976). doi: 10.1088/0022-3735/9/1/018http://doi.org/10.1088/0022-3735/9/1/018
H. Geppert-Kleinrath, H. W. Herrmann, Y. H. Kim et al., Pulse dilation gas Cherenkov detector for ultra-fast gamma reaction history at the NIF. Rev. Sci. Instrum. 89, 10I146 (2018). doi: 10.1063/1.5039377http://doi.org/10.1063/1.5039377
S. G. Gales, C. J. Horsfield, A. L. Meadowcroft et al., Characterisation of a sub-20 ps temporal resolution pulse dilation photomultiplier tube. Rev. Sci. Instrum. 89, 063506 (2018). doi: 10.1063/1.5031110http://doi.org/10.1063/1.5031110
J. Feng, K. Engelhorn, B. I. Cho et al., A grazing incidence x-ray streak camera for ultrafast, single-shot measurements. Appl. Phys. Lett. 96, 134102 (2010). doi: 10.1063/1.3371810http://doi.org/10.1063/1.3371810
I. Konvalina and I. Müllerová, Properties of the cathode lens combined with a focusing magnetic/immersion-magnetic lens. Nucl. Instrum. Meth. A 645, 55-59 (2011). doi: 10.1016/j.nima.2010.12.232http://doi.org/10.1016/j.nima.2010.12.232
Z. Chang, A. Rundquist, J. Zhou et al., Demonstration of a sub-picosecond x-ray streak camera. Appl. Phys. Lett. 69, 133-135 (1996). doi: 10.1063/1.118099http://doi.org/10.1063/1.118099
H. Z. Cai, X. Zhao, J. Y. Liu et al., Dilation framing camera with 4 ps resolution. APL Photonics 1, 016101 (2016). doi: 10.1063/1.4945350http://doi.org/10.1063/1.4945350
P. M. Bell, J. D. Kilkenny, O. L. Landen et al., Electrical characteristics of short pulse gated microchannel plate detectors. Rev. Sci. Instrum. 63, 5072-5074 (1992). doi: 10.1063/1.1143495http://doi.org/10.1063/1.1143495
M. M. Shakya and Z. H. Chang, Achieving 280 fs resolution with a streak camera by reducing the deflection dispersion. Appl. Phys. Lett. 87, 041103 (2005). doi: 10.1063/1.2001732http://doi.org/10.1063/1.2001732
D. Cesar and P. Musumeci, Temporal magnification for streaked ultrafast electron diffraction and microscopy. Ultramicroscopy 199, 1-6 (2019). doi: 10.1016/j.ultramic.2019.01.003http://doi.org/10.1016/j.ultramic.2019.01.003
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构