Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei
NUCLEAR PHYSICS AND INTERDISCIPLINARY RESEARCH|Updated:2022-10-24
|
Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei
Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei
核技术(英文版)2022年33卷第9期 文章编号:111
Affiliations:
1.College of Physics, Henan Normal University, Xinxiang 453007, China
Author bio:
htuwhling@126.com
Funds:
National Natural Science Foundation of China(11975091);Program for Innovative Research Team (in Science and Technology) in University of Henan Province, China(21IRTSTHN011)
Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei[J]. 核技术(英文版), 2022,33(9):111
Hui-Ling Wei, Xun Zhu, Chen Yuan. Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei[J]. Nuclear Science and Techniques, 2022,33(9):111
Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei[J]. 核技术(英文版), 2022,33(9):111 DOI: 10.1007/s41365-022-01096-w.
Hui-Ling Wei, Xun Zhu, Chen Yuan. Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei[J]. Nuclear Science and Techniques, 2022,33(9):111 DOI: 10.1007/s41365-022-01096-w.
Configurational information entropy analysis of fragment mass cross distributions to determine the neutron skin thickness of projectile nuclei
摘要
Abstract
Configurational information entropy (CIE) analysis has been shown to be applicable for determining the neutron skin thickness (,δ,np,) of neutron-rich nuclei from fragment production in projectile fragmentation reactions. The BNN + FRACS machine learning model was adopted to predict the fragment mass cross-sections (,σ,A,) of the projectile fragmentation reactions induced by calcium isotopes from ,36,Ca to ,56,Ca on a ,9,Be target at 140 MeV/u. The fast Fourier transform was adopted to decompose the possible information compositions in ,σ,A, distributions and determine the quantity of CIE (,S,A, [,f,]). It was found that the range of fragments significantly influences the quantity of ,S,A, [,f,], which results in different trends of ,S,A, [,f,] ~ ,δ,np, correlation. The linear ,S,A, [,f,] ~ ,δ,np, correlation in a previous study [Nucl. Sci. Tech. 33, 6 (2022)] could be reproduced using fragments with relatively large mass fragments, which verifies that ,S,A, [,f,] determined from fragment ,σ,A, is sensitive to the neutron skin thickness of neutron-rich isotopes.
关键词
Keywords
Neutron skin thicknessMass cross-section distributionConfigurational information entropyProjectile fragmentation reaction
references
J. Meng, P. Ring, Giant Halo at the neutron drip line. Phys. Rev. Lett. 80, 460 (1998). DOI: 10.1103/PhysRevLett.80.460http://doi.org/10.1103/PhysRevLett.80.460
J. Meng, H. Toki, S. G. Zhou et al., Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 57, 470 (2006). https://www.sciencedirect.com/science/article/pii/S014664100500075Xhttps://www.sciencedirect.com/science/article/pii/S014664100500075X DOI: 10.1016/j.ppnp.2005.06.001http://doi.org/10.1016/j.ppnp.2005.06.001
J. Meng, S. G. Zhou, Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum. J. Phys. G Nucl. Part. Phys. 42, 093101 (2015). DOI: 10.1088/0954-3899/42/9/093101http://doi.org/10.1088/0954-3899/42/9/093101
C. W. Ma, Y. G. Ma, Shannon information entropy in heavy-ion collisions. Prog. Part. Nucl. Phys. 99, 120 (2018). DOI: 10.1016/j.ppnp.2018.01.002http://doi.org/10.1016/j.ppnp.2018.01.002
C.W. Ma, H.L. Wei, X.Q. Liu et al., Nuclear fragments in projectile fragmentation reactions. Prog. Part. Nucl. Phys. 121, 103911 (2021). DOI: 10.1016/j.ppnp.2021.103911http://doi.org/10.1016/j.ppnp.2021.103911
C. W. Ma, Y. Fu, D. Q. Fang et al., Chin. Phys. B 17, 1216 (2008). DOI: 10.1088/1674-1056/17/4/011http://doi.org/10.1088/1674-1056/17/4/011
C. W. Ma, H. L. Wei, Y. G. Ma, Neutron-skin effects in isobaric yield ratios for mirror nuclei in a statistical abrasion-ablation model. Phys. Rev. C 88, 044612 (2013). doi: 10.1103/PhysRevC.88.044612http://doi.org/10.1103/PhysRevC.88.044612
T. Aumann, C. A. Bertulani, F. Schindler et al., Peeling off neutron skins from neutron-rich nuclei: Constraints on the symmetry energy from neutron-removal cross sections. Phys. Rev. Lett. 119: 262501 (2017). DOI: 10.1103/PhysRevLett.119.262501http://doi.org/10.1103/PhysRevLett.119.262501
L. Li, F.-Y. Wang, Y.-X. Zhang, Isospin effects on intermediate mass fragments at intermediate energy-heavy ion collisions. Nucl. Sci. Tech. 33, 58 (2022). DOI: 10.1007/s41365-022-01050-whttp://doi.org/10.1007/s41365-022-01050-w
C.C. Guo, J. Su, L. Zhu, Secondary decay effects of the isospin fractionation in the projectile fragmentation at GeV/nucleon. Nucl. Sci. Tech. 31, 123 (2020). DOI: 10.1007/s41365-020-00832-4http://doi.org/10.1007/s41365-020-00832-4
C.W. Ma, Y.P. Liu, H.L. Wei, et al., Determination of neutron-skin thickness using configurational information entropy. Nucl. Sci. Tech. 33, 6 (2022). DOI: 10.1007/s41365-022-00997-0http://doi.org/10.1007/s41365-022-00997-0
A.E. Bernardini, R. da Rocha, Entropic information of dynamical AdS/QCD holographic models. Phys. Lett. B 762, 107 (2016). DOI: 10.1016/j.physletb.2016.09.023http://doi.org/10.1016/j.physletb.2016.09.023
W. Rubin, Real and Complex Analysis, McGrawChill, 1987, Singapore
C. E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J., 27, 379 (1948). doi: 10.1002/j.1538-7305.1948.tb01338.xhttp://doi.org/10.1002/j.1538-7305.1948.tb01338.x
B. Mei, Improved empirical parameterization for projectile fragmentation cross sections. Phys. Rev. C 95, 034608 (2017). DOI: 10.1103/PhysRevC.95.034608http://doi.org/10.1103/PhysRevC.95.034608
K. Sümmerer, Improved empirical parametrization of fragmentation cross sections. Phys. Rev. C 86, 014601 (2012). DOI: 10.1103/PhysRevC.86.014601http://doi.org/10.1103/PhysRevC.86.014601
C.W. Ma, X.B. Wei, X.X. Chen et al., Precise machine learning models for fragment production in projectile fragmentation reactions by Bayesian neural networks. Chin. Phys. C 46, 074104 (2022). DOI: 10.1088/1674-1137/ac5efbhttp://doi.org/10.1088/1674-1137/ac5efb
C. W. Ma, D. Peng, H. L. Wei et al., Isotopic cross-sections in proton induced spallation reactions based on the Bayesian neural network method. Chin. Phys. C 44, 014104 (2020). DOI: 10.1088/1674-1137/44/1/014104http://doi.org/10.1088/1674-1137/44/1/014104
C. W. Ma, D. Peng, H. L. Wei et al., A Bayesian-neural-network prediction for fragment production in proton induced spallation reaction. Chin. Phys. C 44, 124107 (2020). DOI: 10.1088/1674-1137/abb657http://doi.org/10.1088/1674-1137/abb657
D. Peng, X. X. Chen, H. L. Wei et al., Bayesian evaluation of residual production cross sections in proton-induced nuclear spallation reactions. J. Phys. G Nucl. Part. Phys. 49, 085102 (2022). DOI: 10.1088/1361-6471/ac7069http://doi.org/10.1088/1361-6471/ac7069
M. Mocko, M. B. Tsang, L. Andronenko et al., Projectile fragmentation of 40Ca, 48Ca, 58Ni, and 64Ni at 140 MeV/nucleon. Phys. Rev. C 74, 054612 (2006). DOI: 10.1103/PhysRevC.74.054612http://doi.org/10.1103/PhysRevC.74.054612