1.College of Information Engineering, Suqian University, Suqian 223800, China
2.School of Physics and Electrical Engineering, AnYang Normal University, Anyang 455000, China
3.Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
4.Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan 411201, China
5.School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
6.Institute of High-Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
7.School of Mathematics and Physics, Henan Urban Construction University, Pingdingshan 467036, China
† xujf@squ.edu.cn
‡ cjxia@yzu.edu.cn
§ luzhenyan@hnust.edu.cn
¶ gxpeng@ucas.ac.cn
Scan for full text
Symmetry energy of strange quark matter and tidal deformability of strange quark stars[J]. 核技术(英文版), 2022,33(11):143
Jian-Feng Xu, Cheng-Jun Xia, Zhen-Yan Lu, et al. Symmetry energy of strange quark matter and tidal deformability of strange quark stars[J]. Nuclear Science and Techniques, 2022,33(11):143
Symmetry energy of strange quark matter and tidal deformability of strange quark stars[J]. 核技术(英文版), 2022,33(11):143 DOI: 10.1007/s41365-022-01130-x.
Jian-Feng Xu, Cheng-Jun Xia, Zhen-Yan Lu, et al. Symmetry energy of strange quark matter and tidal deformability of strange quark stars[J]. Nuclear Science and Techniques, 2022,33(11):143 DOI: 10.1007/s41365-022-01130-x.
Research performed during the past decade revealed an important role of symmetry energy in the equation of state (EOS) of strange quark matter (SQM). By introducing an isospin-dependent term into the quark mass scaling, the SQM stability window in the equivparticle model was studied. The results show that a sufficiently strong isospin dependence ,C,I, can significantly widen the SQM region of absolute stability, yielding results that simultaneously satisfy the constraints of the astrophysical observations of PSR J1614-2230 with 1.928 ± 0.017 ,M,⊙, and tidal deformability 70 ≤ Λ,1.4, ≤ 580 measured in the event GW170817. With increasing ,C,I, the difference between the ,u,d, and ,s, quark fractions for the SQM in ,β,-equilibrium becomes inconspicuous for ,C,>,0, leading to small isospin asymmetry ,δ, and further resulting in similar EOS and structures of strange quark stars (SQSs). Moreover, unlike the behavior of the maximum mass of ,u,–,d, QSs, which varies with ,C,I, depending on the sign of the parameter ,C, the maximum mass of the SQSs decreases monotonously with increasing ,C,I,.
Symmetry energyStrange quark matterStrange starsTidal deformability
A.R. Bodmer, Collaped nuclei. Phys. Rev. D 4, 1601 (1971). doi: 10.1103/PhysRevD.4.1601http://doi.org/10.1103/PhysRevD.4.1601
E. Witten, Cosmic separation of phases. Phys. Rev. D 30, 272 (1984). doi: 10.1103/PhysRevD.30.272http://doi.org/10.1103/PhysRevD.30.272
H. Terazawa, Super-Hypernuclei in the Quark-Shell Model. J. Phys. Soc. Jpn. 58, 3555 (1989). doi: 10.1143/JPSJ.58.3555http://doi.org/10.1143/JPSJ.58.3555
E. Farhi, R.L. Jaffe, Strange matter. Phys. Rev. D 30, 2379 (1984). doi: 10.1103/PhysRevD.30.2379http://doi.org/10.1103/PhysRevD.30.2379
K. Fukushima, T. Hatsuda, The phase diagram of dense QCD. Rept.Prog.Phys. 74, 014001 (2011). doi: 10.1088/0034-4885/74/1/014001http://doi.org/10.1088/0034-4885/74/1/014001
I. Barbour, N.-E. Behilil, E. Dagotto, et al., Problems with finite density simulations of lattice QCD. Nucl. Phys. B 275, 296 (1986). doi: 10.1016/0550-3213(86)90601-2http://doi.org/10.1016/0550-3213(86)90601-2
G. Fowler, S. Raha, R. Weiner, Confinement and Phase Transitions. Z. Phys. C 9, 271 (1981). doi: 10.1007/BF01410668http://doi.org/10.1007/BF01410668
S. Chakrabarty, S. Raha, B. Sinha, Strange quark matter and the mechanism of confinement. Phys. Lett. B 229, 112 (1989). doi: 10.1016/0370-2693(89)90166-4http://doi.org/10.1016/0370-2693(89)90166-4
O. Benvenuto, G. Lugones, Strange matter equation of state in the quark mass density dependent model. Phys. Rev. D 51, 1989 (1995). doi: 10.1103/PhysRevD.51.1989http://doi.org/10.1103/PhysRevD.51.1989
G.X. Peng, H.C. Chiang, J.J. Yang, et al., Mass formulas and thermodynamic treatment in the mass-density-dependent model of strange quark matter. Phys. Rev. C 61, 015201 (1999). doi: 10.1103/PhysRevC.61.015201http://doi.org/10.1103/PhysRevC.61.015201
G.X. Peng, H.C. Chiang, B.S. Zou, et al., Thermodynamics, strange quark matter, and strange stars. Phys. Rev. C 62, 025801 (2000). doi: 10.1103/PhysRevC.62.025801http://doi.org/10.1103/PhysRevC.62.025801
R.X. Xu, Solid Quark Stars?. Astrophys. J. Lett. 596, L59 (2003). doi: 10.1086/379209http://doi.org/10.1086/379209
R.X. Xu, Can cold quark matter be solid? Int. J. Mod. Phys. D 19, 1437 (2010). doi: 10.1142/S0218271810017767http://doi.org/10.1142/S0218271810017767
A. Peshier, B. Kmpfer, O. Pavlenko, et al., An effective model of the quark-gluon plasma with thermal parton masses. Phys. Lett. B 337, 235 (1994). doi: 10.1016/0370-2693(94)90969-5http://doi.org/10.1016/0370-2693(94)90969-5
M. Bluhm, B. Kmpfer, G. Soff, The QCD equation of state near T(c) within a quasi-particle model. Phys. Lett. B 620, 131 (2005). doi: 10.1016/j.physletb.2005.05.083http://doi.org/10.1016/j.physletb.2005.05.083
V.M. Bannur, Self-consistent quasiparticle model for quark-gluon plasma. Phys. Rev. C 75, 044905 (2007). doi: 10.1103/PhysRevC.75.044905http://doi.org/10.1103/PhysRevC.75.044905
F. Gardim, F. Steffens, Thermodynamics of quasi-particles at finite chemical potential. Nucl. Phys. A 825, 222 (2009). doi: 10.1016/j.nuclphysa.2009.05.001http://doi.org/10.1016/j.nuclphysa.2009.05.001
X.J. Wen, Z.Q. Feng, N. Li, et al., Strange quark matter and strangelets in the quasiparticle model. J. Phys. G 36, 025011 (2009). doi: 10.1088/0954-3899/36/2/025011http://doi.org/10.1088/0954-3899/36/2/025011
T. Xia, L. He, P. Zhuang, Three-flavor Nambu–Jona-Lasinio model at finite isospin chemical potential. Phys. Rev. D 88, 056013 (2013). doi: 10.1103/PhysRevD.88.056013http://doi.org/10.1103/PhysRevD.88.056013
J.-F. Xu, Bulk viscosity of interacting magnetized strange quark matter. Nucl. Sci. Tech. 32, 111 (2021). doi: 10.1007/s41365-021-00954-3http://doi.org/10.1007/s41365-021-00954-3
C. Peng, G.-X. Peng, C.-J. Xia, et al., Magnetized strange quark matter in the equivparticle model with both confinement and perturbative interactions. Nucl. Sci. Tech. 27, 98 (2016). doi: 10.1007/s41365-016-0095-5http://doi.org/10.1007/s41365-016-0095-5
L. Luo, J. Cao, Y. Yan, et al., A thermodynamically consistent quasi-particle model without density-dependent infinity of the vacuum zero-point energy. Euro. Phys. J. C 73, 2626 (2013). doi: 10.1140/epjc/s10052-013-2626-0http://doi.org/10.1140/epjc/s10052-013-2626-0
C.J. Xia, G.X. Peng, S.W. Chen, et al., Thermodynamic consistency, quark mass scaling, and properties of strange matter. Phys. Rev. D 89, 105027 (2014). doi: 10.1103/PhysRevD.89.105027http://doi.org/10.1103/PhysRevD.89.105027
J.F. Xu, G.X. Peng, F. Liu, et al., Strange matter and strange stars in a thermodynamically self-consistent perturbation model with running coupling and running strange quark mass. Phys. Rev. D 92, 025025 (2015). doi: 10.1103/PhysRevD.92.025025http://doi.org/10.1103/PhysRevD.92.025025
Z.-Y. Lu, G.-X. Peng, S.-P. Zhang, et al., Quark mass scaling and properties of light-quark matter. Nucl. Sci. Tech. 27, 148 (2016). doi: 10.1007/s41365-016-0148-9http://doi.org/10.1007/s41365-016-0148-9
P. Demorest, T. Pennucci, S. Ransom, et al., Shapiro delay measurement of a two solar mass neutron star. Nature 467, 1081 (2010). doi: 10.1038/nature09466http://doi.org/10.1038/nature09466
E. Fonseca, T.T. Pennucci, J.A. Ellis, et al., The NANOGrav nine-year data set: mass and geometric measurements of binary millisecond pulsars. Astrophys. J. 832, 167 (2016). doi: 10.3847/0004-637X/832/2/167http://doi.org/10.3847/0004-637X/832/2/167
J. Antoniadis, P.C.C. Freire, N. Wex, et al., A massive pulsar in a compact relativistic binary. Science 340, 1233232 (2013). doi: 10.1126/science.1233232http://doi.org/10.1126/science.1233232
H.T. Cromartie, E. Fonseca, S.M. Ransom, et al., Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nature Astronomy 4, 72 (2020). doi: 10.1038/s41550-019-0880-2http://doi.org/10.1038/s41550-019-0880-2
E. Fonseca, H.T. Cromartie, T.T. Pennucci, et al., Refined mass and geometric measurements of the high-mass PSR J0740+ 6620. Astrophys. J. Lett. 915, L12 (2021). doi: 10.3847/2041-8213/ac03b8http://doi.org/10.3847/2041-8213/ac03b8
D. Blaschke, M. Cierniak, Studying the onset of deconfinement with multi-messenger astronomy of neutron stars. Astron. Nachr. 342, 227 (2021). doi: 10.1002/asna.202113909http://doi.org/10.1002/asna.202113909
H. Liu, J. Xu, P.-C. Chu, Symmetry energy effects on the properties of hybrid stars. Phys. Rev. D 105, 043015 (2022). doi: 10.1103/PhysRevD.105.043015http://doi.org/10.1103/PhysRevD.105.043015
B.P. Abbott, R. Abbott, T.D. Abbott, et al., GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017). doi: 10.1103/PhysRevLett.119.161101http://doi.org/10.1103/PhysRevLett.119.161101
The LIGO Scientific Collaboration and the Virgo Collaboration, GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys. J. Lett. 896, L44 (2020). doi: 10.3847/2041-8213/ab960fhttp://doi.org/10.3847/2041-8213/ab960f
C. Drischler, S. Han, J.M. Lattimer, et al., Limiting masses and radii of neutron stars and their implications. Phys. Rev. C 103, 045808 (2021). doi: 10.1103/PhysRevC.103.045808http://doi.org/10.1103/PhysRevC.103.045808
G.A. Contrera, D. Blaschke, J.P. Carlomagno, et al., Quark-nuclear hybrid equation of state for neutron stars under modern observational constraints. Phys. Rev. C 105, 045808 (2022). doi: 10.1103/PhysRevC.105.045808http://doi.org/10.1103/PhysRevC.105.045808
M. Cierniak, D. Blaschke, Hybrid neutron stars in the mass-radius diagram. Astrono. Nachr. 342, 819 (2021). doi: 10.1002/asna.202114000http://doi.org/10.1002/asna.202114000
B.P. Abbott, R. Abbott, T.D. Abbott, et al. (The LIGO Scientific Collaboration and the Virgo Collaboration), GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett. 121, 161101 (2018). doi: 10.1103/PhysRevLett.121.161101http://doi.org/10.1103/PhysRevLett.121.161101
P.G. Krastev, B.-A. Li, Imprints of the nuclear symmetry energy on the tidal deformability of neutron stars. J. Phys. G 46, 074001 (2019). doi: 10.1088/1361-6471/ab1a7ahttp://doi.org/10.1088/1361-6471/ab1a7a
Z. Carson, A.W. Steiner, K. Yagi, Constraining nuclear matter parameters with GW170817. Phys. Rev. D 99, 043010 (2019). doi: 10.1103/PhysRevD.99.043010http://doi.org/10.1103/PhysRevD.99.043010
N.-B. Zhang, B.-A. Li, Extracting nuclear symmetry energies at high densities from observations of neutron stars and gravitational waves. Eur. Phys. J. A 55, 39 (2019). doi: 10.1140/epja/i2019-12700-0http://doi.org/10.1140/epja/i2019-12700-0
S. Thakur, V. Thakur, R. Kumar, et al., Structural properties of rotating hybrid compact stars with color-flavor-locked quark matter core and their tidal deformability. Eur. Phys. J. A 58, 93 (2022). doi: 10.1140/epja/s10050-022-00744-4http://doi.org/10.1140/epja/s10050-022-00744-4
L. Liu, M. Kang, The properties of hybrid stars in a low symmetry energy model. New Astron. 95, 101817 (2022). doi: 10.1016/j.newast.2022.101817http://doi.org/10.1016/j.newast.2022.101817
H.-M. Jin, C.-J. Xia, T.-T. Sun, et al., Deconfinement phase transition and quark condensate in compact stars. (2022). arXiv:2205.04801.
W.-L. Yuan, A. Li, Z. Miao, et al., Interacting ud and uds quark matter at finite densities and quark stars. Phys. Rev. D 105, 123004 (2022). doi: 10.1103/PhysRevD.105.123004http://doi.org/10.1103/PhysRevD.105.123004
Z.-Q. Miao, C.-J. Xia, X.-Y. Lai, et al., A bag model of matter condensed by the strong interaction. Int. J. Mod. Phys. E 31, 2250037 (2022). doi: 10.1142/S0218301322500379http://doi.org/10.1142/S0218301322500379
B. Holdom, J. Ren, C. Zhang, Quark matter may not be strange. Phys. Rev. Lett. 120, 222001 (2018). doi: 10.1103/PhysRevLett.120.222001http://doi.org/10.1103/PhysRevLett.120.222001
L. Wang, J. Hu, C.-J. Xia, et al., Stable up-down quark matter nuggets, quark star crusts, and a new family of white dwarfs. Galaxies 9, 70 (2021). doi: 10.3390/galaxies9040070http://doi.org/10.3390/galaxies9040070
G. Pagliara, J. Schaffner-Bielich, Hadron-quark phase transition at nonzero isospin density: The effect of quark pairing. Phys. Rev. D 81, 094024 (2010). doi: 10.1103/PhysRevD.81.094024http://doi.org/10.1103/PhysRevD.81.094024
G.Y. Shao, M. Colonna, M. Di Toro, et al., Influence of vector interactions on the hadron-quark/gluon phase transition. Phys. Rev. D 85, 114017 (2012). doi: 10.1103/PhysRevD.85.114017http://doi.org/10.1103/PhysRevD.85.114017
K.S. Jeong, S.H. Lee, Symmetry energy in cold dense matter. Nucl. Phys. A 945, 21 (2016). doi: 10.1016/j.nuclphysa.2015.09.010http://doi.org/10.1016/j.nuclphysa.2015.09.010
L.-W. Chen, Nuclear matter symmetry energy and the symmetry energy coefficient in the mass formula. Phys. Rev. C 83, 044308 (2011). doi: 10.1103/PhysRevC.83.044308http://doi.org/10.1103/PhysRevC.83.044308
A.W. Steiner, M. Prakash, J.M. Lattimer, et al., Isospin asymmetry in nuclei and neutron stars. Phys. Rept. 411, 325 (2005). doi: 10.1016/j.physrep.2005.02.004http://doi.org/10.1016/j.physrep.2005.02.004
M.Di Toro, B. Liu, V. Greco, et al., Symmetry energy effects on the mixed hadron-quark phase at high baryon density. Phys. Rev. C 83, 014911 (2011). doi: 10.1103/PhysRevC.83.014911http://doi.org/10.1103/PhysRevC.83.014911
S.-W. Chen, L. Gao, G.-X. Peng, One-gluon-exchange effect on the properties of quark matter and strange stars. Chin. Phys. C 36, 947 (2012). doi: 10.1088/1674-1137/36/10/005http://doi.org/10.1088/1674-1137/36/10/005
P.-C. Chu, L.-W. Chen, Quark matter symmetry energy and quark stars. Astrophys. J. 780, 135 (2014). doi: 10.1088/0004-637X/780/2/135http://doi.org/10.1088/0004-637X/780/2/135
L.-W. Chen, Symmetry Energy in Nucleon and Quark Matter. Nucl. Phys. Rev. 34, 20 (2017). doi: 10.11804/NuclPhysRev.34.01.020http://doi.org/10.11804/NuclPhysRev.34.01.020
T. Damour, A. Nagar, Relativistic tidal properties of neutron stars. Phys. Rev. D 80, 084035 (2009). doi: 10.1103/PhysRevD.80.084035http://doi.org/10.1103/PhysRevD.80.084035
T. Hinderer, B.D. Lackey, R.N. Lang, et al., Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D 81, 123016 (2010). doi: 10.1103/PhysRevD.81.123016http://doi.org/10.1103/PhysRevD.81.123016
S. Postnikov, M. Prakash, J.M. Lattimer, Tidal Love numbers of neutron and self-bound quark stars. Phys. Rev. D 82, 024016 (2010). doi: 10.1103/PhysRevD.82.024016http://doi.org/10.1103/PhysRevD.82.024016
E.-P. Zhou, X. Zhou, A. Li, Constraints on interquark interaction parameters with GW170817 in a binary strange star scenario. Phys. Rev. D 97, 083015 (2018). doi: 10.1103/PhysRevD.97.083015http://doi.org/10.1103/PhysRevD.97.083015
L.-W. Chen, C.M. Ko, B.-A. Li, Determination of the stiffness of the nuclear symmetry energy from isospin diffusion. Phys. Rev. Lett. 94, 032701 (2005). doi: 10.1103/PhysRevLett.94.032701http://doi.org/10.1103/PhysRevLett.94.032701
Y. Zhou, L.-W. Chen, Ruling out the supersoft high-density symmetry energy from the discovery of PSR J0740+6620 with mass . Astrophys. J. 886, 52 (2019). doi: 10.3847/1538-4357/ab4adfhttp://doi.org/10.3847/1538-4357/ab4adf
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构