1.Department of Automation, University of Science and Technology of China, Hefei 230026, China
2.School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
3.Fundamental Science on Nuclear Wastes and Environment Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
†lhl0502@mail.ustc.edu.cn
Scan for full text
A novel approach for feature extraction from a gamma-ray energy spectrum based on image descriptor transferring for radionuclide identification[J]. 核技术(英文版), 2022,33(12):158
Hao-Lin Liu, Hai-Bo Ji, Jiang-Mei Zhang, et al. A novel approach for feature extraction from a gamma-ray energy spectrum based on image descriptor transferring for radionuclide identification[J]. Nuclear Science and Techniques, 2022,33(12):158
A novel approach for feature extraction from a gamma-ray energy spectrum based on image descriptor transferring for radionuclide identification[J]. 核技术(英文版), 2022,33(12):158 DOI: 10.1007/s41365-022-01150-7.
Hao-Lin Liu, Hai-Bo Ji, Jiang-Mei Zhang, et al. A novel approach for feature extraction from a gamma-ray energy spectrum based on image descriptor transferring for radionuclide identification[J]. Nuclear Science and Techniques, 2022,33(12):158 DOI: 10.1007/s41365-022-01150-7.
This study proposes a novel feature extraction approach for radionuclide identification to increase the precision of identification of the gamma-ray energy spectrum set. For easier utilization of the information contained in the spectra, the vectors of the gamma-ray energy spectra from Euclidean space, which are fingerprints of the different types of radionuclides, were mapped to matrices in the Banach space. Subsequently, to make the spectra in matrix form easier to apply to image-based deep learning frameworks, the matrices of the gamma-ray energy spectra were mapped to images in the RGB color space. A deep convolutional neural network (DCNN) model was constructed and trained on the ImageNet dataset. The mapped gamma-ray energy spectrum images were applied as inputs to the DCNN model, and the corresponding outputs of the convolution layers and fully connected layers were transferred as descriptors of the images to construct a new classification model for radionuclide identification. The transferred image descriptors consist of global and local features, where the activation vectors of fully connected layers are global features, and activations from convolution layers are local features. A series of comparative experiments between the transferred image descriptors, peak information, features extracted by the histogram of the oriented gradients (HOG), and scale-invariant feature transform (SIFT) using both synthetic and measured data were applied to 11 classical classifiers. The results demonstrate that although the gamma-ray energy spectrum images are completely unfamiliar to the DCNN model and have not been used in the pre-training process, the transferred image descriptors achieved good classification results. The global features have strong semantic information, which achieves an average accuracy of 92.76% and 94.86% on the synthetic dataset and measured dataset, respectively. The results of the statistical comparison of features demonstrate that the proposed approach outperforms the peak searching based method, HOG, and SIFT on the synthetic and measured datasets.
Radionuclide identificationFeature extractionTransfer learningGamma energy spectrum analysisImage descriptor
J.M. Ghawaly, A.D. Nicholson, D.E. Peplow, et al. Data for training and testing radiation detection algorithms in an urban environment. Sci. Data. 7(1), 1-6 (2020). doi: 10.6084/m9.figshare.12654065http://doi.org/10.6084/m9.figshare.12654065
M.A. Mariscotti, A method for automatic identification of peaks in the presence of background and its application to spectrum analysis. Nucl. Instrum. Methods. 50, 309-320 (1967). doi: 10.1016/0029-554X(67)90058-4http://doi.org/10.1016/0029-554X(67)90058-4
X.Z. Li, Q.X. Zhang, H.Y. Tan et al., fast nuclide identification based on sequential Bayesian method. Nucl. Sci. Tech. 32(12), 143 (2021). doi: 10.1007/s41365-021-00982-zhttp://doi.org/10.1007/s41365-021-00982-z
Y. Chen, L.P. Zhang, S. Xiao et al. Identification of unknown shielding parameters with gamma-ray spectra using a derivative-free inverse radiation transport model. Nucl. Sci. Tech. 29(5), 70 (2018). doi: 10.1007/s41365-018-0401-5http://doi.org/10.1007/s41365-018-0401-5
H.Q. Huang, X.F. Yang, W.C. Ding et al. Estimation method for parameters of overlapping nuclear pulse signals. Nucl. Sci. Tech. 28(1), 12 (2017). doi: 10.1007/s41365-016-0161-zhttp://doi.org/10.1007/s41365-016-0161-z
R. Shi, X.G. Tuo, H.L. Li et al. Unfolding analysis of the LaBr 3: Ce gamma spectrum with a detector response matrix constructing algorithm based on energy-resolution calibration. Nucl. Sci. Tech. 29, 1 (2018). doi: 10.1007/s41365-017-0340-6http://doi.org/10.1007/s41365-017-0340-6
D.K. Fagan, S.M. Robinson, R.C. Runkle, Statistical methods applied to gamma-ray spectroscopy algorithms in nuclear security missions. Appl. Radiat. Isot. 70, 2428-2439 (2012). doi: 10.1016/j.apradiso.2012.06.016http://doi.org/10.1016/j.apradiso.2012.06.016
E. Yoshida, K. Shizuma, S. Endo, et al. The application of neural networks for the analysis of gamma-ray spectra was measured with a Ge spectrometer. Nucl. Instrum. Meth. A. 484(1-3), 557-563 (2002). doi: 10.1016/S0168-9002(01)01962-3http://doi.org/10.1016/S0168-9002(01)01962-3
Y.L. Song, F.Q. Zhou, Y. Li et al. Methods for obtaining the characteristic c-ray net peak count from the interlaced overlap peak in the HPGe c-ray spectrometer system. Nucl. Sci. Tech. 30, 11 (2019). doi: 10.1007/s41365-018-0525-7http://doi.org/10.1007/s41365-018-0525-7
J. Wang, J. Jiang, Determination of net area for 92.6 keV peak of 238 U by the spectrum-stripping method. Nucl. Tech. 15(4), 205-207 (1992). (in Chinese)
J.G. Lu, F.X. Zhao, D.M. Lu, Study on the Analysis Method of γ-Spectral Peaks of Environmental Samples. J. Ningde Nor. Univ (Nat. Sci.). 13(2), 15-17 (1995). (in Chinese)
C. Tsabaris, E.G. Androulakaki, S. Alexakis et al. In-situ gamma-ray spectrometer for the deep ocean. Appl. Radiat. Isot. 142, 120-127 (2018). doi: 10.1016/j.apradiso.2018.08.024http://doi.org/10.1016/j.apradiso.2018.08.024
C. Bobin, O. Bichler, V. Lourenvo et al. Real-time radionuclide identification in c-emitter mixtures based on spiking neural network. Appl. Radiat. Isot. 109, 405-409 (2016). doi: 10.1016/j.apradiso.2015.12.029http://doi.org/10.1016/j.apradiso.2015.12.029
E.G. Androulakaki, M. Kokkoris, C. Tsabaris et al. In situ spectrometry in a marine environment using full spectrum analysis for natural radionuclides. Appl. Radiat. Isot. 114, 76-86 (2016). doi: 10.1016/j.apradiso.2016.05.008http://doi.org/10.1016/j.apradiso.2016.05.008
L. Chen, Y.X. Wei, Nuclide identification algorithm based on K-L transform and neural networks. Nucl. Instrum. Meth. A. 598(2), 450-453 (2009). doi: 10.1016/j.nima.2008.09.035http://doi.org/10.1016/j.nima.2008.09.035
Y. Liu, W. Wei, D Niu. Nuclide identification and analysis using artificial neural networks. Ord. Indu. Auto. 34(11),86-91(2015) doi: 10.7690/bgzdh.2015.11.022http://doi.org/10.7690/bgzdh.2015.11.022
J.S. Ren, J.M. Zhang, K.P. Wang, Radioactive Nuclide Identification Method Based on SVD and SVM. Ord. Indu. Auto. 36(5),50-53 (2017). (in Chinese)
C.J. Sullivan, S.E. Garner, K.B. Butterfield, Wavelet analysis of gamma-ray spectral. Paper Presented at the 13th IEEE Symposium Conference Record on Nuclear Science (Rome, Italy 16-22 Oct. 2004) doi: 10.1109/NSSMIC.2004.1462198http://doi.org/10.1109/NSSMIC.2004.1462198
C.J. Sullivan, M.E. Martinez, S.E. Garner, Wavelet analysis of sodium iodide spectral. IEEE T. Nucl. Sci. 53(5), 2916-2922 (2006). doi: 10.1109/TNS.2006.881909http://doi.org/10.1109/TNS.2006.881909
J. He, X. Tang, P. Gong, et al., a rapid radionuclide identification algorithm based on the discrete cosine transform and a BP neural network. Ann. Nucl. Energy. 112, 1-8 (2018). doi: 10.1016/j.anucene.2017.09.032http://doi.org/10.1016/j.anucene.2017.09.032
J.M. Zhang, H.B. Ji, X.H. Feng, et al., nuclide spectrum feature extraction, and nuclide identification based on a sparse representation. High Power Laser Part. Beams. 30(04), 046003 (2018). doi: 10.11884/HPLPB201830.170435http://doi.org/10.11884/HPLPB201830.170435
M.G. Paff, A. Di Fulvio, S.D. Clarke, et al., Radionuclide identification algorithm for an organic scintillator-based radiation portal monitor. Nucl. Instrum. Meth. A. 849, 41-48 (2017). doi: 10.1016/j.nima.2017.01.009http://doi.org/10.1016/j.nima.2017.01.009
Y. Altmann, A. Di Fulvio, M.G. Paff, et al. Expectation propagation for weak radionuclide identification at radiation portal monitors. Sci. Rep.-Uk. 10(1), 1-12 (2020). doi: 10.1038/s41598-020-62947-3http://doi.org/10.1038/s41598-020-62947-3
S.M. Galib, P.K. Bhowmik, A.V. Avachat, et al. Comparative study of machine learning methods for automated identification of radionuclides using NaI gamma-ray spectra. Nucl. Eng. Technol. 53(12), 4072-4079 (2021). doi: 10.1016/j.net.2021.06.020http://doi.org/10.1016/j.net.2021.06.020
D.U. Xiaochuang, T.U. Hongbing, L.I. Ke, et al., Radionuclide identification method based on a gamma-spectra template library synthetic by radial basis function neural networks. J. Tsinghua Univ (Sci. and Tec.). 61(11), 1308-1315 (2021). doi: 10.16511/j.cnki.qhdxxb.2020.22.033http://doi.org/10.16511/j.cnki.qhdxxb.2020.22.033
M. Kamuda, J. Stinnett, C.J. Sullivan, Automated isotope identification algorithm using artificial neural networks. IEEE T. Nucl. Sci. 64, 1858-1864 (2017). doi: 10.1109/TNS.2017.2693152http://doi.org/10.1109/TNS.2017.2693152
C.J. Sullivan, J. Stinnett, Validation of a Bayesian-based isotope identification algorithm. Nucl. Instrum. Meth. Phys. Res. Sect. A. 784, 298-305 (2015). doi: 10.1016/j.nima.2014.11.113http://doi.org/10.1016/j.nima.2014.11.113
C.J. Wang, D.M. Bao, C. Song et al. Investigation of fuzzy recognition mechanism for c-ray fingerprints of nuclear materials. Acta Phys. Sinica. 57(9), 5361-5365 (2008). doi: 10.7498/aps.57.5361http://doi.org/10.7498/aps.57.5361
S. Qi, S Wang, Y, Chen, et al., Radionuclide identification method for NaI low-count gamma-ray spectra using an ANN. Nucl. Eng. Technol. 54(1), 269-274 (2022). doi: 10.1016/j.net.2021.07.025http://doi.org/10.1016/j.net.2021.07.025
M. Alamaniotis, J. Mattingly, L.H. Tsoukalas. Kernel-based machine learning for background estimation of NaI low-count gamma-ray spectra. IEEE. T. Nucl. Sci. 60(3), 2209-2221(2013). doi: 10.1109/TNS.2013.2260868http://doi.org/10.1109/TNS.2013.2260868
M. Alamaniotis, S. Lee, T. Jevremovic, Intelligent analysis of low-count scintillation spectra using support vector regression and fuzzy logic. Nucl. Technol. 191(1), 41-57 (2015). doi: 10.13182/NT14-75http://doi.org/10.13182/NT14-75
S.Y. Wen, B.R. Wang, G. Xiao et al. The study of nuclide identification algorithm based on sequential Bayesian analysis. Nucl. Elec. Det. Tech. 36(2), 179-183 (2016). doi: 10.3969/j.issn.0258-0934.2016.02.015http://doi.org/10.3969/j.issn.0258-0934.2016.02.015 (in Chinese)
Y. Wang, Z.M. Liu, Y.P. Wan et al. Energy spectrum nuclide recognition method based on long short-term memory neural networks. High Power Laser Part. Beams 32(10), 106001 (2020). doi: 10.11884/HPLPB202032.200118http://doi.org/10.11884/HPLPB202032.200118 (in Chinese)
K.T. Nelson, J.R. Romo, M. Monterial et al., Feature extraction and design from gamma-ray spectra for radionuclide identification. Paper Presented at the INMM and ESDARSA Joint Virtual Annual Meeting (Livermore 23-26, 30 Aug.-1 Sep. 2021) https://www.osti.gov/servlets/purl/1818419https://www.osti.gov/servlets/purl/1818419
B.T. Koo, H.C. Lee, K. Bae et al., Development of a radionuclide identification algorithm based on a convolutional neural network for a radiation portal monitoring system. Radiat. Phys. Chem. 180, 109300 (2021). doi: 10.1016/j.radphyschem.2020.109300http://doi.org/10.1016/j.radphyschem.2020.109300
A.G.L. Otero, J.T. Marumo, A.J. Potiens Junior, Applying deep-learning in gamma-spectroscopy for radionuclide identification. Paper Presented at the 3rd International Conference on Dosimetry and its Applications. (Lisbon, Portugal 27-31 May 2019) http://repositorio.ipen.br/handle/123456789/31012http://repositorio.ipen.br/handle/123456789/31012
F. Hu, G.S. Xia, J. Hu, et al., Transferring DCNNs for scene classification of high-resolution remote sensing imagery. Remote Sens-Basel. 7(11), 14680-14707 (2015). doi: 10.3390/rs71114680http://doi.org/10.3390/rs71114680
A. Babenko, A. Slesarev, A. Chigorin et al., Neural codes for image retrieval. Paper Presented at the 13th European Conference on Computer Vision. (Zurich, Switzerland 5-12 Sep. 2014) doi: 10.1007/978-3-319-10590-1_38http://doi.org/10.1007/978-3-319-10590-1_38
Y. Gong, L. Wang, R. Guo, et al., Multiscale orderless pooling of deep convolution activation features. Paper Presented at the 13th European Conference on Computer Vision. (Zurich, Switzerland 5-12 Sep. 2014) doi: 10.1007/978-3-319-10584-0_26http://doi.org/10.1007/978-3-319-10584-0_26
A.S. Razavian, J. Sullivan, S. Carlsson, et al., visual instance retrieval using deep convolutional networks. ITE Trans. Media Technol. Appl. 4(3), 251-258 (2016). doi: 10.3169/mta.4.251http://doi.org/10.3169/mta.4.251
M. Cimpoi, S. Maji, A. Vedaldi, Deep filter banks for texture recognition and segmentation. Paper Presented at the 28th IEEE Conference on Computer Vision and Pattern Recognition. (Boston, USA 7-12 June 2015) https://doi.org/0.1109/CVPR.2015.7299007https://doi.org/0.1109/CVPR.2015.7299007
A. Babenko, V. Lempitsky, Aggregating local deep features for image retrieval. Paper Presented at the 15th IEEE International Conference on Computer Vision. (Santiago, Chile 11-18 Dec 2015) doi: 10.1109/ICCV.2015.150http://doi.org/10.1109/ICCV.2015.150
A. Babenko, V. Lempitsky, Aggregating deep convolution features for image retrieval (2015). arXiv:1510.07493
L. Liu, C. Shen, A. Van den Hengel, The treasure beneath convolution layers: Cross-convolution-layer pooling for image classification. Paper Presented at the 28th IEEE Conference on Computer Vision and Pattern Recognition. (Boston, USA 7-12 June 2015) doi: 10.1109/CVPR.2015.7299107http://doi.org/10.1109/CVPR.2015.7299107
S. Eddins, A New Colormap for MATLAB - Part 1 - Introduction, https://blogs.mathworks.com/steve/2014/10/13/a-new-colormap-for-matlab-part-1-introduction/https://blogs.mathworks.com/steve/2014/10/13/a-new-colormap-for-matlab-part-1-introduction/; 2014 [accessed October 13 2014].
Stanford Vision Lab, The homepage of ImageNet, https://ImageNet.org/https://ImageNet.org/; 2021 [accessed Mar 11 2021].
I.H. Witten, E. Frank, M.A. Hall et al., Data mining: Practical machine learning tools and techniques, 3rd ed. (New Zealand, 2014), pp. 403-406
D.G. Lowe, Object recognition from local scale-invariant features. Paper Presented at the 7th IEEE International Conference on Computer Vision. (Kerkyra, Greece 20-27 Sep 1999). doi: 10.1109/ICCV.1999.790410http://doi.org/10.1109/ICCV.1999.790410
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection. Paper Presented at the 18th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. (San Diego, USA 20-25 June 2005) doi: 10.1109/CVPR.2005.177http://doi.org/10.1109/CVPR.2005.177
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. Paper Presented at the 3rd International Conference on Learning Representations (San Diego, USA 7-9 May 2015) doi: 10.48550/arXiv.1409.1556http://doi.org/10.48550/arXiv.1409.1556
L. Van der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11),2579-2605 (2008). https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdfhttps://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
J. Demšar, Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1-30 (2006).
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构