1.The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
* nieyuancun@whu.edu.cn
** hejianhua@whu.edu.cn
Scan for full text
Design of S-band photoinjector with high bunch charge and low emittance based on multi-objective genetic algorithm[J]. 核技术(英文版), 2023,34(3):41
Ze-Yi Dai, Yuan-Cun Nie, Zi Hui, et al. Design of S-band photoinjector with high bunch charge and low emittance based on multi-objective genetic algorithm[J]. Nuclear Science and Techniques, 2023,34(3):41
Design of S-band photoinjector with high bunch charge and low emittance based on multi-objective genetic algorithm[J]. 核技术(英文版), 2023,34(3):41 DOI: 10.1007/s41365-023-01183-6.
Ze-Yi Dai, Yuan-Cun Nie, Zi Hui, et al. Design of S-band photoinjector with high bunch charge and low emittance based on multi-objective genetic algorithm[J]. Nuclear Science and Techniques, 2023,34(3):41 DOI: 10.1007/s41365-023-01183-6.
High-brightness electron beams are required to drive LINAC-based free-electron lasers (FELs) and storage-ring-based synchrotron radiation light sources. The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current; the minimum transverse emittance is mainly determined by the injector of the LINAC. Thus, a photoinjector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4,th, generation synchrotron radiation sources and FELs is desirable. The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper. Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II. The effects of the laser pulse shape, half-cell length of the RF gun, and RF parameters on the output beam quality were analyzed and compared. The normalized transverse emittance was optimized to be as low as 0.65 mm·mrad and 0.92 mm·mrad when the bunch charge was as high as 1 nC and 2 nC, respectively. Finally, the beam stability properties of the photoinjector, considering misalignment and RF jitter, were simulated and analyzed.
Electron linear acceleratorPhotoinjectorBeam dynamicsMulti-objective genetic algorithm
M. Eriksson, J.F. van der Veen, C. Quitmann et al., Diffraction-limited storage rings–a window to the science of tomorrow. J. Synchrotron Rad. 21, 837-842 (2014). doi: 10.1107/S1600577514019286http://doi.org/10.1107/S1600577514019286
A. Bjorling, S. Kalbfleisch, M. Kahnt et al., Ptychographic characterization of a coherent nanofocused X-ray beam. Optics Express 28, 5069-5076 (2020). doi: 10.1364/OE.386068http://doi.org/10.1364/OE.386068
S. Kumar, Next Generation Light Sources and Applications. arXiv:1807.11084v3.
C. Bostedt, S. Boutet, D.M. Fritz et al., LINAC coherent light source: The first five years. Rev. Mod. Phys. 88, 015007 (2016). doi: 10.1103/RevModPhys.88.015007http://doi.org/10.1103/RevModPhys.88.015007
C. Feng, H.X. Deng, Review of fully coherent free-electron lasers. Nucl. Sci. Tech. 29, 160 (2018). doi: 10.1007/s41365-018-0490-1http://doi.org/10.1007/s41365-018-0490-1
Z. Zhao, D. Wang, Q. Gu et al., SXFEL: A Soft X-ray Free Electron Laser in China. Synchrotron Radiation News 30, 29-33 (2017). doi: 10.1080/08940886.2017.1386997http://doi.org/10.1080/08940886.2017.1386997
L.M. Zheng, Y.C. Du, Z. Zhang et al., Development of S-band photocathode RF guns at Tsinghua University. Nucl. Instrum. Meth. Phys. Res. Sect. A 834, 98-107 (2016). doi: 10.1016/j.nima.2016.07.015http://doi.org/10.1016/j.nima.2016.07.015
P. Emma, R. Akre, J. Arthur et al., First lasing and operation of an ångstrom-wavelength free-electron laser. Nature Photonics 4, 641-647 (2010). doi: 10.1038/nphoton.2010.176http://doi.org/10.1038/nphoton.2010.176
H.S. Kang, C.K. Min, H. Heo et al., Hard X-ray free-electron laser with femtosecond-scale timing jitter. Nature Photonics 11, 708-713 (2017). doi: 10.1038/s41566-017-0029-8http://doi.org/10.1038/s41566-017-0029-8
J. Lee, I.S. Ko, J.H. Han et al., Parameter Optimization of PAL-XFEL Injector. Journal of the Korean Physical Society 72, 1158-1165 (2018). doi: 10.3938/jkps.72.1158http://doi.org/10.3938/jkps.72.1158
C. Milne, T. Schietinger, M. Aiba et al., SwissFEL: the Swiss X-ray free electron laser. Applied Sciences 7, 720 (2017). doi: 10.3390/app7070720http://doi.org/10.3390/app7070720
T. Schietinger, M. Pedrozzi, M. Aiba et al., Commissioning experience and beam physics measurements at the SwissFEL Injector Test Facility. Phys. Rev. Accel. Beams 19, 100702 (2016). doi: 10.1103/PhysRevAccelBeams.19.100702http://doi.org/10.1103/PhysRevAccelBeams.19.100702
M. Bei, M. Borland, Y. Cai et al., The potential of an ultimate storage ring for future light sources. Nucl. Instrum. Meth. Phys. Res. Sect. A 622, 518-535 (2010). doi: 10.1016/j.nima.2010.01.045http://doi.org/10.1016/j.nima.2010.01.045
P.F. Tavares, E. Al-Dmour, A. Andersson et al., Commissioning and first-year operational results of the MAX IV 3 GeV ring. J. Synchrotron Rad. 25, 1291-1316 (2018). doi: 10.1107/S1600577518008111http://doi.org/10.1107/S1600577518008111
K. Duhrkop, M. Fleischauer, M. Ludwig et al., SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nature methods 16, 299-302 (2019). doi: 10.1038/s41592-019-0344-8http://doi.org/10.1038/s41592-019-0344-8
R. Hettel, DLSR design and plans: an international overview. J. Synchrotron Rad. 21, 843-855 (2014). doi: 10.1107/S1600577514011515http://doi.org/10.1107/S1600577514011515
Y.C. Nie, C. Liebig, M. Hüning et al., Tuning of 2.998 GHz S-band hybrid buncher for injector upgrade of LINAC II at DESY. Nucl. Instrum. Meth. Phys. Res. Sect. A 761, 69-78 (2014). doi: 10.1016/j.nima.2014.05.043http://doi.org/10.1016/j.nima.2014.05.043
J. Andersson, F. Curbis, L. Isaksson et al., The Pre-Injector and Photocathode Gun Design for the MAX IV SXL. in Proceedings of IPAC2019, Melbourne, Australia, 2064-2066 (2019)
W.X. Wang, C. Li, Z.G. He, et al., Commissioning the photocathode radio frequency gun: a candidate electron source for Hefei Advanced Light Facility. Nucl. Sci. Tech. 33, 1-9 (2022). doi: 10.1007/s41365-022-01000-6http://doi.org/10.1007/s41365-022-01000-6
Y. Jiao, G. Xu, X.H. Cui et al., The HEPS project. J. Synchrotron Rad. 25, 1611-1618 (2018). doi: 10.1107/S1600577518012110http://doi.org/10.1107/S1600577518012110
S. Henderson, Status of the APS upgrade project. in Proceedings of IPAC 2015, Richmond, VA, USA, 1791-1793 (2015)
D. Wang, K.L.F. Bane, S. Santis et al., Single Bunch Instability Simulations in the Storage Ring of the ALS-U Project. in Proceedings of IPAC2021, Campinas, SP, Brazil, 2783-2785 (2021)
L. Yang, D. Robin, F. Sannibale et al., Global optimization of an accelerator lattice using multiobjective genetic algorithms. Nucl. Instrum. Meth. Phys. Res. Sect. A 609, 50-57 (2009). doi: 10.1016/j.nima.2009.08.027http://doi.org/10.1016/j.nima.2009.08.027
J. Wan, P. Chu, Y. Jiao, Neural network-based multiobjective optimization algorithm for nonlinear beam dynamics. Phys. Rev. Accel. Beams 23, 081601 (2020). doi: 10.1103/PhysRevAccelBeams.23.081601http://doi.org/10.1103/PhysRevAccelBeams.23.081601
C. Meng, O.Z. Xiao, S.L. Pei et al., Optimization of Klystron Efficiency with MOGA. in Proceedings of IPAC2018, Vancouver, BC, Canada, 2419-2421 (2018)
X. Pang, L.J. Rybarcyk, Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation. Nucl. Instrum. Meth. Phys. Res. Sect. A 741, 124-129 (2014). doi: 10.1016/j.nima.2013.12.042http://doi.org/10.1016/j.nima.2013.12.042
H. Feng, S. De Santis, K. Baptiste et al., Proposed design and optimization of a higher harmonic cavity for ALS-U. Rev. Scientific Instruments 91, 014712 (2020). doi: 10.1063/1.5135955http://doi.org/10.1063/1.5135955
R. Bartolini, M. Apollonio, I.P.S. Martin, Multiobjective genetic algorithm optimization of the beam dynamics in LINAC drivers for free electron lasers. Phys. Rev. ST Accel. Beams 15, 030701 (2012). doi: 10.1103/PhysRevSTAB.15.030701http://doi.org/10.1103/PhysRevSTAB.15.030701
C. Gulliford, A. Bartnik, I. Bazarov et al., Multiobjective optimization design of an rf gun based electron diffraction beam line. Phys. Rev. Accel. Beams 20, 033401 (2017). doi: 10.1103/PhysRevAccelBeams.20.033401http://doi.org/10.1103/PhysRevAccelBeams.20.033401
I.V. Bazarov, C.K. Sinclair, Multivariate optimization of a high brightness dc gun photoinjector. Phys. Rev. ST Accel. Beams 8, 034202 (2005). doi: 10.1103/PhysRevSTAB.8.034202http://doi.org/10.1103/PhysRevSTAB.8.034202
K. Deb, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on Evolutionary Computation 6, 182-197 (2002). doi: 10.1109/4235.996017http://doi.org/10.1109/4235.996017
J. Rosenzweig, S. Anderson, K. Bishofberger et al., The neptune photoinjector. Nucl. Instrum. Meth. Phys. Res. Sect. A 410, 437-451 (1998). doi: 10.1016/S0168-9002(98)00175-2http://doi.org/10.1016/S0168-9002(98)00175-2
K. Halbach, R. Holsinger, Superfish–a computer program for evaluation of rf cavities with cylindrical symmetry. Particle Accel. 7, 213-222 (1976)
T. Rao, D.H. Dowell, An engineering guide to photoinjectors. arXiv:1403.7539v1
C. Limborg-Deprey, L. Xiao, D. Dowell et al., Modifications on rf components in the LCLS injector. in Proceedings of PAC2005, Knoxville, Tennessee, 2233–2235 (2005)
D. Alesini, A. Battisti, M. Bellaveglia et al., Design, realization, and high power test of high gradient, high repetition rate brazing-free S-band photogun. Phys. Rev. Accel. Beams 21, 112001 (2018). doi: 10.1103/PhysRevAccelBeams.21.112001http://doi.org/10.1103/PhysRevAccelBeams.21.112001
K. Flöttmann, ASTRA: A space charge tracking algorithm, http://www.desy.de/~mpyflo/http://www.desy.de/~mpyflo/
B.E. Carlsten, New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator. Nucl. Instrum. Meth. Phys. Res. Sect. A 285, 313-319 (1989). doi: 10.1016/0168-9002(89)90472-5http://doi.org/10.1016/0168-9002(89)90472-5
Y. Ding, A. Brachmann, F.J. Decker et al., Measurements and simulations of ultralow emittance and ultrashort electron beams in the LINAC coherent light source. Phys. Rev. Lett. 102, 254801 (2009). doi: 10.1103/PhysRevSTAB.15.030701http://doi.org/10.1103/PhysRevSTAB.15.030701
P.W. Huang, H. Qian, Y. Du et al., Photoemission and degradation of semiconductor photocathode. Phys. Rev. Accel. Beams 22, 123403 (2019). doi: 10.1103/PhysRevAccelBeams.22.123403http://doi.org/10.1103/PhysRevAccelBeams.22.123403
F. Zhou, A. Brachmann, P. Emma et al., Impact of the spatial laser distribution on photocathode gun operation. Phys. Rev. ST Accel. Beams 15, 090701 (2012). doi: 10.1103/PhysRevSTAB.15.090701http://doi.org/10.1103/PhysRevSTAB.15.090701
S. Lederer, S. Schreiber, Cs2Te photocathode lifetime at flash and European XFEL. in Proceedings of IPAC2018, Vancouver, BC, Canada, 2496-2498 (2018)
D.H. Dowell, J.F. Schmerge, Quantum efficiency and thermal emittance of metal photocathodes. Phys. Rev. ST Accel. Beams 12, 074201 (2009). doi: 10.1103/PhysRevSTAB.12.074201http://doi.org/10.1103/PhysRevSTAB.12.074201
H.H. Li, J. Wang, L. Tang et al., Project of Wuhan Photon Source. in Proceedings of IPAC2021, Campinas, SP, Brazil, 346-349 (2021)
J.K. Kim, RF and space-charge effects in laser-driven RF electron guns. Nucl. Instrum. Meth. Phys. Res. Sect. A 275, 201-218 (1989). doi: 10.1016/0168-9002(89)90688-8http://doi.org/10.1016/0168-9002(89)90688-8
E. pirez, P. Musumeci, J. Maxson et al., S-band 1.4 cell photoinjector design for high brightness beam generation. Nucl. Instrum. Meth. Phys. Res. Sect. A 865, 109-113 (2017). doi: 10.1016/j.nima.2016.08.063http://doi.org/10.1016/j.nima.2016.08.063
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构