1.Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Zhuhai 519082, China
* chengsb3@mail.sysu.edu.cn
Scan for full text
Experimental investigation on pressure-buildup characteristics of a water lump immerged in a molten lead pool[J]. 核技术(英文版), 2023,34(3):35
Zi-Jian Deng, Song-Bai Cheng, Hui Cheng. Experimental investigation on pressure-buildup characteristics of a water lump immerged in a molten lead pool[J]. Nuclear Science and Techniques, 2023,34(3):35
Experimental investigation on pressure-buildup characteristics of a water lump immerged in a molten lead pool[J]. 核技术(英文版), 2023,34(3):35 DOI: 10.1007/s41365-023-01188-1.
Zi-Jian Deng, Song-Bai Cheng, Hui Cheng. Experimental investigation on pressure-buildup characteristics of a water lump immerged in a molten lead pool[J]. Nuclear Science and Techniques, 2023,34(3):35 DOI: 10.1007/s41365-023-01188-1.
Motivated to understand the pressure-buildup characteristics in a circumstance of a water droplet immerged inside a heavy liquid metal pool, which is a key phenomenon during a Steam Generator Tube Rupture accident of Lead-cooled Fast Reactor, many experiments have been conducted by injecting water lumps into a molten lead pool at Sun Yat-sen University. In order to deepen the understanding of the influence of melt material, this lead experiment was compared with a Lead-Bismuth-Eutectic (LBE) experiment in the literature. For both experiments, a steam explosion occurred in a small part of the experimental runs, which generally leads to strengthened pressure buildup. Regarding the non-explosion experimental cases, the impact of all parameters employed in lead experiments (i.e., water lump volume, water lump shape, molten pool depth, and temperature of water and melt) on the pressure buildup is non-negligible and similar to that in our previous experiments using LBE. Notably, limited pressure buildup with an increase in water lump volume was also observed. A slightly more violent pressure buildup tends to appear in the lead experiments than in the LBE experiments under the same experimental conditions, which may be due to the higher thermal conductivity of lead than of LBE. In a few experimental runs with a relatively low melt temperature close to the melting point of lead, local solidification of liquid lead was observed, restricting pressure buildup. For the lead and LBE experiments, the calculated melt kinetic energy conversion efficiency ,η, has a relatively small value (not exceeding 1.6%), and the ,η, values have an overall positive correlation with the impulse on the molten pool.
Lead-cooled fast reactorSteam generator tube rupture accidentPressure-buildup characteristicsExperimental studyMelt material
OECD/NEA & GIF, Technology Roadmap Update for Generation IV Nuclear Energy Systems. (2014)
K. Tuček, J. Carlsson, H. Wider, Comparison of sodium and lead-cooled fast reactors regarding reactor physics aspects, severe safety and economical issues. Nucl. Eng. Des. 236, 1589-1598 (2006). doi: 10.1016/j.nucengdes.2006.04.019http://doi.org/10.1016/j.nucengdes.2006.04.019
N. Li, Lead-alloy coolant technology and materials - technology readiness level evaluation. Prog. Nucl. Energy. 50(2-6), 140-151 (2008). doi: 10.1016/j.pnucene.2007.10.016http://doi.org/10.1016/j.pnucene.2007.10.016
F. Roelofs (ed.), Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors (Woodhead Publishing, the United Kingdom, 2019)
T.N. Dinh, Multiphase flow phenomena of steam generator tube rupture in a lead-cooled reactor system: a scoping analysis. In: Proceedings of ICAPP 2007, Paper 7497, Nice, France, 13-18 May 2007
W. Huang, D. Zhou, R. Sa et al., Experimental study on thermal-hydraulic behavior of LBE and water interface. Prog. Nucl. Energy. 99 (8), 1-10 (2017). doi: 10.1016/j.pnucene.2017.04.005http://doi.org/10.1016/j.pnucene.2017.04.005
M. Eboli, A. Del Nevo, N. Forgione et al., Experimental Characterization of Leak Detection Systems in HLM Pool Using LIFUS5/Mod3 Facility. Nucl. Technol. 206(9), 1409-1420 (2020). doi: 10.1080/00295450.2020.1749480http://doi.org/10.1080/00295450.2020.1749480
A.S. Iskhakov, V.I. Melikhov, O.I. Melikhov et al., Steam generator tube rupture in lead-cooled fast reactors: estimation of impact on neighboring tubes. Nucl. Eng. Des. 341, 198-208 (2019). doi: 10.1016/j.nucengdes.2018.11.001http://doi.org/10.1016/j.nucengdes.2018.11.001
A.S. Iskhakov, V.I. Melikhov, O.I. Melikhov et al., Hugoniot analysis of energetic molten lead-water interaction. Ann. Nucl. Energy. 129, 437-449 (2019). doi: 10.1016/j.anucene.2019.02.018http://doi.org/10.1016/j.anucene.2019.02.018
A.V. Beznosov, S.S. Pinaev, D.V. Davydov et al., Experimental Studies of the Characteristics of Contact Heat Exchange Between Lead Coolant and the Working Body. Atom. Energy. 98(3). 170-176 (2005). doi: 10.1007/s10512-005-0188-4http://doi.org/10.1007/s10512-005-0188-4
S. Wang, M. Flad, W. Maschek et al., Evaluation of a steam generator tube rupture accident in an accelerator driven system with lead cooling. Prog. Nucl. Energy. 50(2-6), 363-369 (2008). doi: 10.1016/j.pnucene.2007.11.018http://doi.org/10.1016/j.pnucene.2007.11.018
A. Ciampichetti, D. Pellini, P. Agostini et al., Experimental and computational investigation of LBE–water interaction in LIFUS 5 facility. Nucl. Eng. Des. 239(11), 2468-2478 (2009). doi: 10.1016/j.nucengdes.2009.08.007http://doi.org/10.1016/j.nucengdes.2009.08.007
A. Ciampichetti, D. Bernardi, T. Cadiou et al., LBE–water interaction in LIFUS 5 facility under different operating conditions. J. Nucl. Mater. 415(3), 449-459 (2011). doi: 10.1016/j.jnucmat.2011.04.051http://doi.org/10.1016/j.jnucmat.2011.04.051
A Pesetti, A. Del Nevo, N. Forgione, Experimental investigation and SIMMER-III code modelling of LBE–water interaction in LIFUS5/Mod2 facility. Nucl. Eng. Des. 290, 119-126 (2014). doi: 10.1016/j.nucengdes.2014.11.016http://doi.org/10.1016/j.nucengdes.2014.11.016
X. Huang, P. Chen, Y. Yin et al., Numerical investigation on LBE-water interaction for heavy liquid metal cooled fast reactors. Nucl. Eng. Des. 361, 110567 (2020). doi: 10.1016/j.nucengdes.2020.110567http://doi.org/10.1016/j.nucengdes.2020.110567
C. Zhang, Effect of SGTR on Thermal Safety of Lead-Based Reactor, University of Science and Technology of China, 2018
C. Zhang, R. Sa, D. Zhou et al., Effects of failure location and pressure on the core voiding under SGTR accident in a LBE-cooled fast reactor. Int. J. Heat. Mass. Tran. 141, 940-948 (2019). doi: 10.1016/j.ijheatmasstransfer.2019.06.106http://doi.org/10.1016/j.ijheatmasstransfer.2019.06.106
W. Huang, R. Sa, D. Zhou et al., Experimental study on fragmentation behaviors of molten LBE and water contact interface. Nucl. Sci. Tech. 26, 060601 (2015). doi: 10.13538/j.1001-8042/nst.26.060601http://doi.org/10.13538/j.1001-8042/nst.26.060601
W. Huang, D. Zhou, R. Sa et al., Experimental study on thermal-hydraulic behaviour of LBE and water interface. Prog. Nucl. Energy. 99, 1-10 (2017). doi: 10.1016/j.pnucene.2017.04.005http://doi.org/10.1016/j.pnucene.2017.04.005
H. Cheng, X. Chen, Y. Ye et al., Systematic experimental investigation on the characteristics of molten lead-bismuth eutectic fragmentation in water. Nucl. Eng. Des. 371, 110943 (2021). doi: 10.1016/j.nucengdes.2020.110943http://doi.org/10.1016/j.nucengdes.2020.110943
H. Cheng, Z. Mai, Y. Li et al., Fundamental experiment study on the fragmentation characteristics of molten lead jet direct contact with water. Nucl. Eng. Des. 386, 111560 (2022). doi: 10.1016/j.nucengdes.2021.111560http://doi.org/10.1016/j.nucengdes.2021.111560
S. Tan, Y. Zhong, H. Cheng et al., Experimental investigation on the characteristics of molten lead-bismuth non-eutectic alloy fragmentation in water. Nucl. Sci. Tech. 33, 115 (2022). doi: 10.1007/s41365-022-01097-9http://doi.org/10.1007/s41365-022-01097-9
S. Cheng, K. Matsuba, M. Isozaki et al., An Experimental study on local fuel-coolant interactions by delivering water into a simulated molten fuel pool. Nucl. Eng. Des. 275, 133-141 (2014). doi: 10.1016/j.nucengdes.2014.05.003http://doi.org/10.1016/j.nucengdes.2014.05.003
S. Cheng, K. Matsuba, M. Isozaki et al., A numerical study on local fuel-coolant interactions in a simulated molten fuel pool using the SIMMER-III code. Ann. Nucl. Energy. 85, 740-752 (2015). doi: 10.1016/j.anucene.2015.06.030http://doi.org/10.1016/j.anucene.2015.06.030
S. Cheng, T. Zhang, C. Meng et al., A comparative study on local fuel-coolant interactions in a liquid pool with different interaction modes. Ann. Nucl. Energy. 132, 258-270 (2019). doi: 10.1016/j.anucene.2019.04.048http://doi.org/10.1016/j.anucene.2019.04.048
T. Zhang, S. Cheng, T. Zhu et al., A new experimental investigation on local fuel-coolant interaction in a molten pool. Ann. Nucl. Energy. 120, 593-603 (2018). doi: 10.1016/j.anucene.2018.06.031http://doi.org/10.1016/j.anucene.2018.06.031
OECD/NEA, Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies (2015 edition). Organization for Economic Cooperation and Development, NEA. No. 7268, Issy-les-Moulineaux, France. (2015)
S. Cheng, Y. Dong, X. Chen et al., Experimental study on local fuel-coolant interaction in molten pool with different melts. Ann. Nucl. Energy. 149, 107760 (2020). doi: 10.1016/j.anucene.2020.107760http://doi.org/10.1016/j.anucene.2020.107760
S. Cheng, Y. Zou, Y. Dong et al., Experimental study on pressurization characteristics of a water droplet entrapped in molten LBE pool. Nucl. Eng. Des. 378, 111192 (2021). doi: 10.1016/j.nucengdes.2021.111192http://doi.org/10.1016/j.nucengdes.2021.111192
R. Sa, M. Takahashi, K. Moriyama, Study on fragmentation behavior of liquid lead alloy droplet in water. Prog. Nucl. Energy. 53(7), 895-901 (2011). doi: 10.1016/j.pnucene.2011.05.003http://doi.org/10.1016/j.pnucene.2011.05.003
H.K. Fauske, On the Mechanism of Uranium Dioxide-Sodium Explosive Interactions. Nucl. Sci. Eng. 51(2), 95-101 (1973). doi: 10.13182/nse73-a26584http://doi.org/10.13182/nse73-a26584
V.K. Dhir, G.P. Purohit, Subcooled film-boiling heat transfer from spheres. Nucl. Eng. Des. 47(1), 49-66 (1978). doi: 10.1016/0029-5493(78)90004-3http://doi.org/10.1016/0029-5493(78)90004-3
S. Kondo, K. Konishi, M. Isozaki et al., Experimental study on simulated molten jet-coolant interactions. Nucl. Eng. Des. 155(1-2), 73-84 (1995). doi: 10.1016/0029-5493(94)00870-5http://doi.org/10.1016/0029-5493(94)00870-5
T. Tsuruta, M. Ochiai, S. Saito, Fuel Fragmentation and Mechanical Energy Conversion Ratio at Rapid Deposition of High Energy in LWR Fuels. J. Nucl. Sci. Technol. 22(9), 742-754 (1985). doi: 10.1080/18811248.1985.9735721http://doi.org/10.1080/18811248.1985.9735721
J.H. Kim, B.T. Min, I.K. Park et al., Triggered steam explosions with the corium melts of various compositions in a two-dimensional interaction vessel in the TROI facility. Nucl. Technol. 176(3), 372-386 (2010). doi: 10.13182/NT11-A13314http://doi.org/10.13182/NT11-A13314
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构