1.Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
3.School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
4.JYAMS PET Research and Development Limited, Nanjing 211100, China
* gengchr@nuaa.edu.cn
tangxiaobin@nuaa.edu.cn
Scan for full text
GPU-accelerated three-dimensional reconstruction method of the Compton camera and its application in radionuclide imaging[J]. 核技术(英文版), 2023,34(4):52
Ren-Yao Wu, Chang-Ran Geng, Feng Tian, et al. GPU-accelerated three-dimensional reconstruction method of the Compton camera and its application in radionuclide imaging[J]. Nuclear Science and Techniques, 2023,34(4):52
GPU-accelerated three-dimensional reconstruction method of the Compton camera and its application in radionuclide imaging[J]. 核技术(英文版), 2023,34(4):52 DOI: 10.1007/s41365-023-01199-y.
Ren-Yao Wu, Chang-Ran Geng, Feng Tian, et al. GPU-accelerated three-dimensional reconstruction method of the Compton camera and its application in radionuclide imaging[J]. Nuclear Science and Techniques, 2023,34(4):52 DOI: 10.1007/s41365-023-01199-y.
A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. A conical-surface sampling back-projection method with scattering angle correction (CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization (LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo (MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras.
Compton cameraThree-dimensional reconstructionRadionuclide imagingGPU
V. Filippou, C. Tsoumpas, Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Med. Phys. 45, e740-e760 (2018). doi: 10.1002/mp.13058http://doi.org/10.1002/mp.13058
C.R. Geng, Y. Ai, X.B. Tang et al., Quantum dots enhanced Cerenkov luminescence imaging. Nucl. Sci. Tech. 30, 71 (2019). doi: 10.1007/s41365-019-0599-xhttp://doi.org/10.1007/s41365-019-0599-x
X.W. Hu, D.D. Li, Y.J. Fu et al., Advances in the application of radionuclide-labeled HER2 affibody for the diagnosis and treatment of ovarian cancer. Front. Oncol. 12, 917439 (2022). doi: 10.3389/fonc.2022.917439http://doi.org/10.3389/fonc.2022.917439
S. Motomura, Y. Kanayama, H. Haba et al., Multiple molecular simultaneous imaging in a live mouse using semiconductor Compton camera. J. Anal. At. Spectrom 23, 1089 (2008). doi: 10.1039/b802964dhttp://doi.org/10.1039/b802964d
P. Kuchment and F. Terzioglu, Three-dimensional image reconstruction from compton camera data. SIAM. J. Imaging. Sci. 9, 1708-1725 (2016). doi: 10.1137/16M107476Xhttp://doi.org/10.1137/16M107476X
Y. Feng, A. Etxebeste, D. Sarrut et al., 3-D reconstruction benchmark of a compton camera against a parallel-hole gamma camera on ideal data. IEEE Trans. Radiat. Plasma. Med. Sci. 4, 479-488 (2020). doi: 10.1109/TRPMS.2019.2955745http://doi.org/10.1109/TRPMS.2019.2955745
M. Fontana, D. Dauvergne, J. M. Létang et al., Compton camera study for high efficiency SPECT and benchmark with Anger system. Phys. Med. Biol. 62, 8794-8812 (2017). doi: 10.1088/1361-6560/aa926ahttp://doi.org/10.1088/1361-6560/aa926a
Y. Suzuki, M. Yamaguchi, H. Odaka et al., Three-dimensional and multienergy gamma-ray simultaneous imaging by using a Si/CdTe compton camera. Radiology 267, 941-947 (2013). doi: 10.1148/radiol.13121194http://doi.org/10.1148/radiol.13121194
M. Uenomach, M. Takahashi, K. Shimazoe et al., Simultaneous in vivo imaging with PET and SPECT tracers using a Compton-PET hybrid camera. Sci. Rep. 11, 1-11 (2021). doi: 10.1038/s41598-021-97302-7http://doi.org/10.1038/s41598-021-97302-7
M. Sakai, M. Yamaguchi, Y. Nagao et al., In vivo simultaneous imaging with 99mTc and 18F using a Compton camera. Phys. Med. Biol. 63, 205006 (2018). doi: 10.1088/1361-6560/aae1d1http://doi.org/10.1088/1361-6560/aae1d1
K. Fujieda, J. Kataoka, S. Mochizuki et al., First demonstration of portable Compton camera to visualize 223-Ra concentration for radionuclide therapy. Nucl. Instrum Methods Phys. Res. Sect A Accel. Spectrom. Detect. Assoc. Equip. 958, 162802 (2020). doi: 10.1016/j.nima.2019.162802http://doi.org/10.1016/j.nima.2019.162802
T. Nakano, M. Sakai, K. Torikai et al., Imaging of 99m Tc-DMSA and 18 F-FDG in humans using a Si/CdTe Compton camera. Phys. Med. Biol. 65, 05LT01 (2020). doi: 10.1088/1361-6560/ab33d8http://doi.org/10.1088/1361-6560/ab33d8
R. Todd, J. Nightingale, and D. Everett, A proposed γ camera. Nature 251, 132-134 (1974). doi: 10.1038/251132a0http://doi.org/10.1038/251132a0
M. Singh, R. R. Brechner, Experimental test-object study of electronically collimated SPECT. J. Nucl. Med. 31, 178-186 (1990).
G. Llosa, G. Bernabeu, D. Burdette et al., Development of a pre-clinical Compton probe prototype for prostate imaging. IEEE Symposium Conference Record Nuclear Science, 7, 4168-4171 October 2004
Z.Y. Yao, C.R. Shi, F. Tian et al., Technical note: Rapid and high‐resolution deep learning–based radiopharmaceutical imaging with 3D‐CZT Compton camera and sparse projection data. Med. Phys. 49, 7336-7346 (2022). doi: 10.1002/mp.15898http://doi.org/10.1002/mp.15898
F. Hueso-González, F. Fiedler, C. Golnik et al., Compton camera and prompt gamma ray timing: Two methods for in vivo range assessment in proton therapy. Front. Oncol. 6, 80 (2016). doi: 10.3389/fonc.2016.00080http://doi.org/10.3389/fonc.2016.00080
D. Mackin, S. Peterson, S. Beddar et al., Evaluation of a stochastic reconstruction algorithm for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy. Phys. Med. Biol. 57, 3537-3553 (2012). doi: 10.1088/0031-9155/57/11/3537http://doi.org/10.1088/0031-9155/57/11/3537
R. K. Parajuli, M. Sakai, R. Parajuli et al., Development and applications of compton camera—A review. Sensors 22, 7374 (2022). doi: 10.3390/s22197374http://doi.org/10.3390/s22197374
Y. F. Yang, Y. Gono, S. Motomura et al., A Compton camera for multitracer imaging. IEEE Trans. Nucl. Sci. 48, 656-661 (2001). doi: 10.1109/23.940142http://doi.org/10.1109/23.940142
B. Mehadji, M. Dupont, Y. Boursieret al., Extension of the list-mode MLEM algorithm for poly-energetic imaging with a compton camera. IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), 1-8 November 2018. doi: 10.1109/NSSMIC.2018.8824289http://doi.org/10.1109/NSSMIC.2018.8824289
Y.L. Liu, J.Q. Fu, Y.L. Li et al., Preliminary results of a Compton camera based on a single 3D position-sensitive CZT detector. Nucl. Sci. Tech. 29, 145 (2018). doi: 10.1007/s41365-018-0483-0http://doi.org/10.1007/s41365-018-0483-0
A. Kishimoto, J. Kataoka, T. Taya et al., First demonstration of multi-color 3-D in vivo imaging using ultra-compact Compton camera. Sci. Rep. 7, 2110 (2017). doi: 10.1038/s41598-017-02377-whttp://doi.org/10.1038/s41598-017-02377-w
G. Rigaud and B. N. Hahn, Reconstruction algorithm for 3D Compton scattering imaging with incomplete data. Inverse. Probl. Sci. En. 29, 967-989 (2021). doi: 10.1080/17415977.2020.1815723http://doi.org/10.1080/17415977.2020.1815723
Z.Y. Yao, Y.S Xiao, B. Wang et al., Study of 3D fast Compton camera image reconstruction method by algebraic spatial sampling. Nucl. Instrum Methods Phys. Res. Sect A Accel. Spectrom. Detect. Assoc. Equip. 954, 161345 (2020). doi: 10.1016/j.nima.2018.10.023http://doi.org/10.1016/j.nima.2018.10.023
S. J. Wilderman, W. L. Rogers, G. F. Knoll et al., Fast algorithm for list mode back-projection of Compton scatter camera data. IEEE Trans. Nucl. Sci. 45, 957-962 (1998). doi: 10.1109/23.682685http://doi.org/10.1109/23.682685
M. J. Cree and P. J. Bones, Towards direct reconstruction from a gamma camera based on Compton scattering. IEEE Trans. Med. Imaging. 13, 398-407 (1994). doi: 10.1109/42.293932http://doi.org/10.1109/42.293932
R. Basko, G. L. Zeng, and G. T. Gullberg, Application of spherical harmonics to image reconstruction for the Compton camera. Phys. Med. Biol. 43, 887-894 (1998). doi: 10.1088/0031-9155/43/4/016http://doi.org/10.1088/0031-9155/43/4/016
M. Hirasawa and T. Tomitani, An analytical image reconstruction algorithm to compensate for scattering angle broadening in Compton cameras. Phys. Med. Biol. 48, 1009-1026 (2003). doi: 10.1088/0031-9155/48/8/304http://doi.org/10.1088/0031-9155/48/8/304
S. J. Wilderman, N. H. Clinthorne, J. A. Fessler et al., List-mode maximum likelihood reconstruction of Compton scatter camera images in nuclear medicine. IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255), 3, 1716-1720 November 1998. doi: 10.1109/NSSMIC.1998.773871http://doi.org/10.1109/NSSMIC.1998.773871
S. Takeda, H. Aono, S. Okuyama et al., Experimental Results of the Gamma-Ray Imaging Capability With a Si/CdTe Semiconductor Compton Camera. IEEE Trans. Nucl. Sci. 56, 783-790 (2009). doi: 10.1109/TNS.2008.2012059http://doi.org/10.1109/TNS.2008.2012059
L. A. Shepp and Y. Vardi, Maximum Likelihood Reconstruction for Emission Tomography. IEEE Trans. Med. Imaging 1, 113-122 (1982). doi: 10.1109/TMI.1982.4307558http://doi.org/10.1109/TMI.1982.4307558
H. H. Barrett, T. White, and L. C. Parra, List-mode likelihood. J. Opt. Soc. Am. A. 14, 2914 (1997). doi: 10.1364/JOSAA.14.002914http://doi.org/10.1364/JOSAA.14.002914
V. Maxim, X. Lojacono, E. Hilaire et al., Probabilistic models and numerical calculation of system matrix and sensitivity in list-mode MLEM 3D reconstruction of Compton camera images. Phys. Med. Biol. 61, 243-264 (2016). doi: 10.1088/0031-9155/61/1/243http://doi.org/10.1088/0031-9155/61/1/243
N. Kohlhase, T. Wegener, M. Schaar et al., Capability of MLEM and OE to Detect Range Shifts With a Compton Camera in Particle Therapy. IEEE Trans. Radiat. Plasma Med. Sci. 4, 233-242 (2020). doi: 10.1109/TRPMS.2019.2937675http://doi.org/10.1109/TRPMS.2019.2937675
Z.Y. Yao, Y.S. Xiao, Z.Q. Chen et al., Compton-based prompt gamma imaging using ordered origin ensemble algorithm with resolution recovery in proton therapy. Sci. Rep.9, 1133 (2019). doi: 10.1038/s41598-018-37623-2http://doi.org/10.1038/s41598-018-37623-2
A. Andreyev, A. Celler, I. Ozsahin et al., Resolution recovery for Compton camera using origin ensemble algorithm: Resolution recovery for Compton camera. Med. Phys. 43, 4866-4876 (2016). doi: 10.1118/1.4959551http://doi.org/10.1118/1.4959551
P. Després and X. Jia, A review of GPU-based medical image reconstruction. Physica Medica 42, 76-92 (2017). doi: 10.1016/j.ejmp.2017.07.024http://doi.org/10.1016/j.ejmp.2017.07.024
J.Y. Jiang, K. Li, S. Komarov et al., Feasibility study of a point‐of‐care positron emission tomography system with interactive imaging capability. Med. Phys. 46, 1798-1813 (2019). doi: 10.1002/mp.13397http://doi.org/10.1002/mp.13397
X.Y Gu, L. Li, L. Weiet al., Real-time reconstruction solution for positron emission mammography imaging-guided intervention. IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 1-5 November 2015. doi: 10.1109/NSSMIC.2015.7582065http://doi.org/10.1109/NSSMIC.2015.7582065
A.R. Zheng, Z.Y. Yao, and Y.S. Xiao, GPU Accelerated Stochastic Origin Ensemble Method With List-Mode Data for Compton Camera Imaging in Proton Therapy. IEEE Trans. Radiat. Plasma Med. Sci. 4, 243-252 (2020). doi: 10.1109/TRPMS.2019.2929423http://doi.org/10.1109/TRPMS.2019.2929423
VG. Nguyen and SJ. Lee, GPU-accelerated iterative reconstruction from Compton scattered data using a matched pair of conic projector and backprojector. Comput. Meth. Prog. Bio. 131, 27-36 (2016). doi: 10.1016/j.cmpb.2016.04.012http://doi.org/10.1016/j.cmpb.2016.04.012
Z.Y. Yao, Y.G. Yuan, J. Wu et al., Rapid compton camera imaging for source terms investigation in the nuclear decommissioning with a subset-driven origin ensemble algorithm. Radiat. Phys. Chem. 197, 110133 (2022). doi: 10.1016/j.radphyschem.2022.110133http://doi.org/10.1016/j.radphyschem.2022.110133
F. Tian, C.R. Geng, Z.Y. Yao et al., Radiopharmaceutical imaging based on 3D-CZT Compton camera with 3D-printed mouse phantom. Physica Medica 96, 140-148 (2022). doi: 10.1016/j.ejmp.2022.03.005http://doi.org/10.1016/j.ejmp.2022.03.005
Y. Li, P. Gong, X.B. Tang et al., DOI correction for gamma ray energy reconstruction based on energy segment in 3D position-sensitive CdZnTe detectors. J. Inst. 17, T03004 (2022). doi: 10.1088/1748-0221/17/03/T03004http://doi.org/10.1088/1748-0221/17/03/T03004
E. Yoshida, H. Tashima, K. Nagatsu et al., Whole gamma imaging: a new concept of PET combined with Compton imaging. Phys. Med. Biol. 65, 125013 (2020). doi: 10.1088/1361-6560/ab8e89http://doi.org/10.1088/1361-6560/ab8e89
T. Ida, S. Motomura, M. Ueda et al., Accurate modeling of event-by-event backprojection for a germanium semiconductor Compton camera for system response evaluation in the LM-ML-EM image reconstruction method. Jpn. J. Appl. Phys. 58, 016002 (2019). doi: 10.7567/1347-4065/aae8e9http://doi.org/10.7567/1347-4065/aae8e9
P. Solevi, E. Muñoz, C. Solaz et al., Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams. Phys. Med. Biol. 61, 5149-5165 (2016). doi: 10.1088/0031-9155/61/14/5149http://doi.org/10.1088/0031-9155/61/14/5149
B. Dogdas, D. Stout, A. F. Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys. Med. Biol. 52, 577-587 (2007). doi: 10.1088/0031-9155/52/3/003http://doi.org/10.1088/0031-9155/52/3/003
D. Shy and Z. He, Gamma-ray tracking for high energy gamma-ray imaging in pixelated CdZnTe. Nucl. Instrum Methods Phys. Res. Sect A Accel. Spectrom. Detect. Assoc. Equip. 954, 161443 (2020). doi: 10.1016/j.nima.2018.10.121http://doi.org/10.1016/j.nima.2018.10.121
E. Muñoz, A. Etxebeste, D. Dauvergne et al., Imaging of polychromatic sources through Compton spectral reconstruction. Phys. Med. Biol. 67, 195017 (2022). doi: 10.1088/1361-6560/ac92b9http://doi.org/10.1088/1361-6560/ac92b9
Y. Kim, T. Lee, and W. Lee, Radiation measurement and imaging using 3D position sensitive pixelated CZT detector. Nucl. Eng. Technol. 51, 1417-1427 (2019). doi: 10.1016/j.net.2019.03.009http://doi.org/10.1016/j.net.2019.03.009
H. Rohling, M. Priegnitz, S. Schoene et al., Requirements for a Compton camera for in vivo range verification of proton therapy. Phys. Med. Biol. 62, 2795-2811 (2017). doi: 10.1088/1361-6560/aa6068http://doi.org/10.1088/1361-6560/aa6068
C.H. Gong, X.B. Tang, D.Y. Shu et al., Optimization of the Compton camera for measuring prompt gamma rays in boron neutron capture therapy. Appl. Radiat. Isot. 124, 62-67 (2017). doi: 10.1016/j.apradiso.2017.03.014http://doi.org/10.1016/j.apradiso.2017.03.014
0
浏览量
2
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构