1.Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
† sgji0906@qq.com
Scan for full text
Sample size adaptive strategy for time-dependent Monte Carlo particle transport simulation[J]. 核技术(英文版), 2023,34(4):58
Dan-Hua ShangGuan, Wei-Hua Yan, Jun-Xia Wei, et al. Sample size adaptive strategy for time-dependent Monte Carlo particle transport simulation[J]. Nuclear Science and Techniques, 2023,34(4):58
Sample size adaptive strategy for time-dependent Monte Carlo particle transport simulation[J]. 核技术(英文版), 2023,34(4):58 DOI: 10.1007/s41365-023-01202-6.
Dan-Hua ShangGuan, Wei-Hua Yan, Jun-Xia Wei, et al. Sample size adaptive strategy for time-dependent Monte Carlo particle transport simulation[J]. Nuclear Science and Techniques, 2023,34(4):58 DOI: 10.1007/s41365-023-01202-6.
When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain important cases. This study proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is realized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in time-independent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement.
Time-dependent Monte Carlo particle transport simulationShannon entropyAdaptive strategy
S.H. Du, S.F. Zhang, T.G. Feng et al., Computer simulation of transport problems, (Hunan Science and Technology Press, China, 1989)
X. Wang, J.L. Li, Z. Wu et al., CMGC - A CAD to Monte Carlo geometry conversion code, Nuc. Sci. Tech. 31, 82 (2020). doi: 10.1007/s41365-020-00793-8http://doi.org/10.1007/s41365-020-00793-8
L. Deng, G. Li, B.Y. Zhang et al., A high fidelity general purpose 3-D Monte Carlo particle transport program JMCT3.0. Nuc. Sci. Tech. 33, 108 (2022). doi: 10.1007/s41365-022-01092-0http://doi.org/10.1007/s41365-022-01092-0
X-5 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, LA-UR-03-1987, 2003
F. Balibrea, On Clausius, Boltzmann and Shannon notions of entropy. J. Mod. Phys. 7, 219-227 (2016). doi: 10.4236/jmp.2016.72022http://doi.org/10.4236/jmp.2016.72022
L. Benguigui, The different paths to entropy. Euro. J. Phys. 34, 303-321 (2013). doi: 10.1088/0143-0807/34/2/303http://doi.org/10.1088/0143-0807/34/2/303
D. Hammer, A. Romashchenko, A. Shen et al., Inequalities for Shannon entropy and Kolmogorov complexity. J. Compu. Sys. Sci. 60, 442-464 (2000). doi: 10.1006/jcss.1999.1677http://doi.org/10.1006/jcss.1999.1677
C.E. Shannon, A mathematical theory of communication. Mob. Compu. Comm. Rev. 5 3–55,(2001). doi: 10.1145/584091.584093http://doi.org/10.1145/584091.584093
P.M. Cincotta, C.M. Giordano, R.A. Silva et al., The Shannon entropy: An efficient indicator of dynamical stability. Phys. D 417, 132816 (2021). doi: 10.1016/j.physd.2020.132816http://doi.org/10.1016/j.physd.2020.132816
R. M. Yulmetyev, N. A. Emelyanova, F. M. Gafarov, Dynamical Shannon entropy and information Tsallis entropy in complex systems. Phys. A 341, 649-676 (2004). doi: 10.1016/j.physa.2004.03.094http://doi.org/10.1016/j.physa.2004.03.094
T. Ueki, Stationarity diagnostics with relative entropy and Wilcoxon signed rank initerated-source Monte Carlo methods. Nucl. Sci. Eng. 160, 242 (2008).doi: 10.13182/NSE160-242http://doi.org/10.13182/NSE160-242
T. Ueki, F.B. Brown, Stationarity modeling and informatics-based diagnostics in Monte Carlo criticality calculations. Nucl. Sci. Eng. 148, 38 (2005).doi: 10.13182/NSE04-15http://doi.org/10.13182/NSE04-15
F.B. Brown, On the use of Shannon entropy of the fission distribution for assessing convergence of Monte Carlo criticality calculations. LA-UR-06-3737 (2006)
Z.G. Li, K. Wang, Y.C. Guo et al., Forced propagation method for Monte Carlo fission source convergence acceleration in the RMC. Nuc. Sci. Tech. 32, 27 (2021). doi: 10.1007/s41365-021-00868-0http://doi.org/10.1007/s41365-021-00868-0
T. Ueki, On-the-fly diagnostics of particle population in iterated-source Monte Carlo Methods. Nucl. Sci. Eng. 158, 15-27 (2008). doi: 10.13182/NSE08-A2735http://doi.org/10.13182/NSE08-A2735
Y. Naito, J. Yang, The sandwich method for determining source convergence in Monte Carlo calculatio. J. Nucl. Sci. Tech. 41, 559 (2004).doi: 10.1080/18811248.2004.9715519http://doi.org/10.1080/18811248.2004.9715519
I. Kim, H. Kim, Y. Kim, Deterministic truncation of the Monte Carlo transport solution for reactor eigenvalue and pinwise power distribution. Nucl. Sci. Eng. 194, 14-31 (2020). doi: 10.1080/00295639.2019.1654815http://doi.org/10.1080/00295639.2019.1654815
G. Aldrich, S. Dutta, J. Woodring, OpenMC in situ source convergence detection. LA-UR-16-23217 (2016). doi: 10.2172/1253484http://doi.org/10.2172/1253484
T. Ueki, F.B. Brown, D.K. Parsons et al., Autocorrelation and dominance ratio in Monte Carlo criticality calculations. Nucl. Sci. Eng. 145, 279-290 (2003). doi: 10.13182/NSE03-04http://doi.org/10.13182/NSE03-04
D.H. ShangGuan, Z.C. Ji, L. Deng et al., New strategy for global tallying in Monte Carlo criticality calculation. Acta. Phys. Sin. 68, 122801 (2019).doi: 10.7498/APS.68.20182276http://doi.org/10.7498/APS.68.20182276
D.H. ShangGuan, L. Deng, B.Y. Zhang et al., Efficient method of calculating Shannon entropy of non-static transport problem in message passing parallel programming environment. Acta. Phys. Sin. 65, 142801 (2016).doi: 10.7498/aps.65.142801http://doi.org/10.7498/aps.65.142801
A. Bulinski, D. Dimitrov, Statistical estimation of the Shannon entropy. Acta. Math. Sin.(English Series) 35,17-46 (2019).doi: 10.1007/s10114-018-7440-zhttp://doi.org/10.1007/s10114-018-7440-z
R.J. Brissenden, A.R. Garlick, Biases in the estimation of Keff and its error by Monte Carlo methods. Ann. Nucl. Energy 13, 63-83 (1986).doi: 10.1016/0306-4549(86)90095-2http://doi.org/10.1016/0306-4549(86)90095-2
M.R. Omar, J.A. Karim, Fission source stationarity diagnostics using the Fourier fundmental mode coefficient. Prog. Nucl. Energy (English Series). 146,104164 (2022).doi: 10.1016/j.pnucene.2022.104164http://doi.org/10.1016/j.pnucene.2022.104164
Q.Q. Pan, N. An, T.F. Zhang et al., Single-step Monte carlo criticality algorithm. Comp.Phys. Comm. 279,108439 (2022).doi: 10.1016/j.cpc.2022.108439http://doi.org/10.1016/j.cpc.2022.108439
Q.Q. Pan, T.F. Zhang, X.J. Liu et al., Optimal batch size growth for wielandt method and superhistory method, Nucl. Sci. Eng. 196, 183-192 (2022).doi: 10.1080/00295639.2021.1968223http://doi.org/10.1080/00295639.2021.1968223
Q.Q. Pan, Redevelopment of shielding module and research on advanced variance reduction methods based on RMC code. Ph.D thesis, Tsinghua University (2020)
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构