1.Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2.Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084, China
† xiaoysh@mail.tsinghua.edu.cn
Scan for full text
Dose reconstruction with Compton camera during proton therapy via subset-driven origin ensemble and double evolutionary algorithm[J]. 核技术(英文版), 2023,34(4):59
Zhi-Yang Yao, Yong-Shun Xiao, Ji-Zhong Zhao. Dose reconstruction with Compton camera during proton therapy via subset-driven origin ensemble and double evolutionary algorithm[J]. Nuclear Science and Techniques, 2023,34(4):59
Dose reconstruction with Compton camera during proton therapy via subset-driven origin ensemble and double evolutionary algorithm[J]. 核技术(英文版), 2023,34(4):59 DOI: 10.1007/s41365-023-01207-1.
Zhi-Yang Yao, Yong-Shun Xiao, Ji-Zhong Zhao. Dose reconstruction with Compton camera during proton therapy via subset-driven origin ensemble and double evolutionary algorithm[J]. Nuclear Science and Techniques, 2023,34(4):59 DOI: 10.1007/s41365-023-01207-1.
Compton camera-based prompt gamma (PG) imaging has been proposed for range verification during proton therapy. However, a deviation between the PG and dose distributions, as well as the difference between the reconstructed PG and exact values, limit the effectiveness of the approach in accurate range monitoring during clinical applications. The aim of the study was to realize a PG-based dose reconstruction with a Compton camera, thereby further improving the prediction accuracy of in-vivo range verification and providing a novel method for beam monitoring during proton therapy. In this paper, we present an approach based on a subset-driven origin ensemble with resolution recovery and a double evolutionary algorithm to reconstruct the dose depth profile (DDP) from the gamma events obtained by a Cadmium-Zinc-Telluride Compton camera with limited position and energy resolution. Simulations of proton pencil beams with clinical particle rate irradiating phantoms made of different materials and the CT-based thoracic phantom were used to evaluate the feasibility of the proposed method. The results show that for the monoenergetic proton pencil beam irradiating homogeneous-material box phantom, the accuracy of the reconstructed DDP was within 0.3 mm for range prediction and within 5.2% for dose prediction. In particular, for 1.6-Gy irradiation in the therapy simulation of thoracic tumors, the range deviation of the reconstructed spread-out Bragg peak was within 0.8 mm, and the relative dose deviation in the peak area was less than 7% compared to the exact values. The results demonstrate the potential and feasibility of the proposed method in future Compton-based accurate dose reconstruction and range verification during proton therapy.
Prompt gamma imagingDose reconstructionRange verificationOrigin ensembleCompton cameraEvolutionary algorithm
H. Zhang, J.Z. Li, R. Hou et al., Design and development of an ACCT for the Shanghai advanced proton therapy facility. Nucl. Sci. Tech. 33(10), 126 (2022). doi: 10.1007/s41365-022-01106-xhttp://doi.org/10.1007/s41365-022-01106-x
X.S. Sun, Y.J. Li, J.Y. Liu et al., Shortening the delivery time of proton therapy by real-time compensation method with raster scanning. Nucl. Sci. Tech. 33(6), 73 (2022). doi: 10.1007/s41365-022-01051-9http://doi.org/10.1007/s41365-022-01051-9
S.C. Huang, H. Zhang, K. Bai et al., Monte Carlo study of the neutron ambient dose equivalent at the heavy ion medical machine in Wuwei. Nucl. Sci. Tech. 33(9), 119 (2022). doi: 10.1007/s41365-022-01093-zhttp://doi.org/10.1007/s41365-022-01093-z
D. Mackin, S. Peterson, S. Beddar et al., Evaluation of a stochastic reconstruction algorithm for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy. Phys. Med. Biol. 57, 3537 (2012). doi: 10.1088/0031-9155/57/11/3537http://doi.org/10.1088/0031-9155/57/11/3537
J. Smeets, F. Roellinghoff, D. Prieels et al., Prompt gamma imaging with a slit camera for real-time range control in proton therapy. Phys. Med. Biol. 57, 3371 (2012). doi: 10.1088/0031-9155/57/11/3371http://doi.org/10.1088/0031-9155/57/11/3371
C.H. Min, C.H. Kim, M.Y. Youn et al., Prompt gamma measurements for locating the dose falloff region in the proton therapy. Appl. Phys. Lett. 89, 183517 (2006). doi: 10.1063/1.2378561http://doi.org/10.1063/1.2378561
D. Mackin, J. Polf, S. Peterson et al., The effects of Doppler broadening and detector resolution on the performance of three-stage Compton cameras. Med. Phys. 40, 012402 (2013). https://aapm.onlinelibrary.wiley.com/doi/10.1118/1.4767756https://aapm.onlinelibrary.wiley.com/doi/10.1118/1.4767756doi: 10.1118/1.4767756http://doi.org/10.1118/1.4767756
S.W. Peterson, D. Robertson, J. Polf, Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy. Phys. Med. Biol. 55, 6841-6856 (2010). doi: 10.1088/0031-9155/55/22/01http://doi.org/10.1088/0031-9155/55/22/01
D. Robertson, J.C. Polf, S.W. Peterson et al., Material effciency studies for a Compton camera designed to measure characteristic prompt gamma rays emitted during proton beam radiotherapy. Phys. Med. Biol. 56, 3047-3059 (2011). doi: 10.1088/0031-9155/56/10/010http://doi.org/10.1088/0031-9155/56/10/010
J. Krimmer, J.L. Ley, C. Abellan et al., Development of a Compton camera for medical applications based on silicon strip and scintillation detectors. Nucl. Instrum. Meth. Phys. Res. Sect. A 787, 98-101 (2015). https://www.sciencedirect.com/science/article/pii/S0168900214013308https://www.sciencedirect.com/science/article/pii/S0168900214013308doi: 10.1016/j.nima.2014.11.042http://doi.org/10.1016/j.nima.2014.11.042
E. Hilaire, D. Sarrut, F. Peyrin et al., Proton therapy monitoring by Compton imaging: influence of the large energy spectrum of the prompt-γ radiation. Phys. Med. Biol. 61, 3127 (2016). https://pubmed.ncbi.nlm.nih.gov/27008459/https://pubmed.ncbi.nlm.nih.gov/27008459/doi: 10.1088/0031-9155/61/8/3127http://doi.org/10.1088/0031-9155/61/8/3127
M.L. Jan, I.T. Hsiao, H.M. Huang, Use of a LYSO-based Compton camera for prompt gamma range verification in proton therapy. Med. Phys. 44, 6261-6269 (2017). doi: 10.1002/mp.12626http://doi.org/10.1002/mp.12626
Z. Yao, Y. Xiao, M. Dong et al., Use of a LYSO-based Compton camera for prompt gamma range verification in proton therapy. Phys. Med. Biol. 68, 045008 (2023). doi: 10.1088/1361-6560/acb4d8http://doi.org/10.1088/1361-6560/acb4d8
M.L. Jan, M.W. Lee, H.M. Huang, PSF reconstruction for Compton-based prompt gamma imaging. Phys. Med. Biol. 63, 035015 (2018). doi: 10.1088/1361-6560/aa9e74http://doi.org/10.1088/1361-6560/aa9e74
Z. Yao, Y. Xiao, Z. Chen et al., Compton-based prompt gamma imaging using ordered origin ensemble algorithm with resolution recovery in proton therapy. Scientific Reports 9, 1133 (2019). https://www.nature.com/articles/s41598-018-37623-2https://www.nature.com/articles/s41598-018-37623-2doi: 10.1038/s41598-018-37623-2http://doi.org/10.1038/s41598-018-37623-2
A. Zheng, Z. Yao, Y. Xiao, GPU accelerated stochastic origin ensemble method with list-mode data for Compton camera imaging in proton therapy. IEEE T. Radiat. Plasma Med. Sci. 4, 243-252 (2019). https://ieeexplore.ieee.org/document/8765613https://ieeexplore.ieee.org/document/8765613doi: 10.1109/TRPMS.2019.2929423http://doi.org/10.1109/TRPMS.2019.2929423
N. Kohlhase, T. Wegener, M. Schaar et al., Capability of MLEM and OE to detect range shifts with a Compton camera in particle therapy. IEEE T. Radiat. Plasma Med. Sci. 4, 233-242 (2019). https://ieeexplore.ieee.org/document/8815866https://ieeexplore.ieee.org/document/8815866doi: 10.1109/TRPMS.2019.2937675http://doi.org/10.1109/TRPMS.2019.2937675
H.M. Huang, Monte Carlo evaluation of a LYSO-based Compton camera using two origin ensemble algorithms with resolution recovery. Med. Phys. 48, 5300-5310 (2021). doi: 10.1002/mp.15092http://doi.org/10.1002/mp.15092
A. Andreyev, A. Sitek, A. Celler, Fast image reconstruction for Compton camera using stochastic origin ensemble approach. Med. Phys. 38, 429-438 (2011). https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3528170https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3528170doi: 10.1118/1.3528170http://doi.org/10.1118/1.3528170
A. Andreyev, A. Celler, I. Ozsahin et al., Resolution recovery for Compton camera using origin ensemble algorithm. Med. Phys. 43, 4866-4876 (2016). https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4959551https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4959551doi: 10.1118/1.4959551http://doi.org/10.1118/1.4959551
S.M. Kim, H. Seo, J.H. Park et al., Resolution recovery reconstruction for a Compton camera. Phys. Med. Biol. 58, 2823 (2013). doi: 10.1088/0031-9155/58/9/28230http://doi.org/10.1088/0031-9155/58/9/28230
G.G. Xin, H. Cai, Y.Q. Guo et al., A novel trigger algorithm for wide-field-of-view imaging atmospheric Cherenkov technique experiments. Nucl. Sci. Tech. 33(3), 25 (2022). doi: 10.1007/s41365-022-01003-3http://doi.org/10.1007/s41365-022-01003-3
J.C. Polf, S. Avery, D.S. Mackin et al., Imaging of prompt gamma rays emitted during delivery of clinical proton beams with a Compton camera: feasibility studies for range verification. Phys. Med. Biol. 60, 7085 (2015). doi: 10.1088/0031-9155/60/18/7085http://doi.org/10.1088/0031-9155/60/18/7085
E. Draeger, D. Mackin, S. Peterson et al., 3D prompt gamma imaging for proton beam range verification. Phys. Med. Biol. 63, 035019 (2018). doi: 10.1088/1361-6560/aaa203http://doi.org/10.1088/1361-6560/aaa203
K. Parodi, T. Bortfeld, A filtering approach based on Gaussian–powerlaw convolutions for local PET verification of proton radiotherapy. Phys. Med. Biol. 51, 1991 (2006). doi: 10.1088/0031-9155/51/8/003http://doi.org/10.1088/0031-9155/51/8/003
E. Fourkal, J. Fan, I. Veltchev, Absolute dose reconstruction in proton therapy using PET imaging modality: feasibility study. Phys. Med. Biol. 54, N217 (2009). doi: 10.1088/0031-9155/54/11/N02http://doi.org/10.1088/0031-9155/54/11/N02
S. Remmele, J. Hesser, H. Paganetti et al., A deconvolution approach for PET-based dose reconstruction in proton radiotherapy. Phys. Med. Biol. 56, 7601 (2011). doi: 10.1088/0031-9155/56/23/017http://doi.org/10.1088/0031-9155/56/23/017
T. Hofmann, M. Pinto, I.A. Mohammad et al., Dose reconstruction from PET images in carbonion therapy: a deconvolution approach. Phys. Med. Biol. 64, 025011 (2019). doi: 10.1088/1361-6560/aaf676http://doi.org/10.1088/1361-6560/aaf676
A. Schumann, M. Priegnitz, S. Schoene et al., From prompt gamma distribution to dose: a novel approach combining an evolutionary algorithm and filtering based on Gaussian-powerlaw convolutions. Phys. Med. Biol. 61, 6919 (2016). doi: 10.1088/0031-9155/61/19/6919http://doi.org/10.1088/0031-9155/61/19/6919
C.C. Liu, H.M. Huang, A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study. Physica Medica. 69, 110-119 (2020). https://www.sciencedirect.com/science/article/pii/S1120179719305289https://www.sciencedirect.com/science/article/pii/S1120179719305289doi: 10.1016/j.ejmp.2019.12.006http://doi.org/10.1016/j.ejmp.2019.12.006
Y.J. Ma, Y. Ren, P. Feng et al., Sinogram denoising via attention residual dense convolutional neural network for low-dose computed tomography. Nucl. Sci. Tech. 32(4), 41 (2021). doi: 10.1007/s41365-021-00874-2http://doi.org/10.1007/s41365-021-00874-2
K. Chen, L.B. Zhang, J.S. Liu et al., Robust restoration of low-dose cerebral perfusion CT images using NCS-Unet. Nucl. Sci. Tech. 33(3), 30 (2022). doi: 10.1007/s41365-022-01014-0http://doi.org/10.1007/s41365-022-01014-0
S.C. Lee, C. Bungau, R. Cywinski, et al. Geant4 simulation of proton-induce spallation for application in ADSR systems. Proceedings of IPAC2016, Busan, Korea, TUPOY019. (2016). http://accelconf.web.cern.ch/AccelConf/ipac2016/papers/tupoy019.pdfhttp://accelconf.web.cern.ch/AccelConf/ipac2016/papers/tupoy019.pdfhttp://accelconf.web.cern.ch/AccelConf/ipac2016/papers/tupoy019.pdfhttp://accelconf.web.cern.ch/AccelConf/ipac2016/papers/tupoy019.pdf
J.-L. Ley, C. Abellan, J.-P. Cachemiche, et al.Development of a Time-Of-Flight Compton Camera for Online Control of Ion therapy. ICTR-PHE 2014, Feb 2014, Genève, Switzerland. hal-00945490 https://hal.science/hal-00945490https://hal.science/hal-00945490https://hal.science/hal-00945490https://hal.science/hal-00945490
ICRU. Report 90. Journal of the ICRU. 14 1 (2014) doi: 10.1093/jicru/ndw030http://doi.org/10.1093/jicru/ndw030
Louis Archambault, et al. https://geant4-userdoc.web.cern.ch/Doxygen/examples_doc/html/ExampleDICOM.htmlExampleDICOM.htmlhttps://geant4-userdoc.web.cern.ch/Doxygen/examples_doc/html/ExampleDICOM.htmlExampleDICOM.html
J. Krimmer, D. Dauvergne, J.M. Létang et al., Prompt-gamma monitoring in hadrontherapy: A review. Nucl. Instrum. Meth. Phys. Res. Sect. A 878, 58-73 (2018). https://www.sciencedirect.com/science/article/pii/S0168900217308380https://www.sciencedirect.com/science/article/pii/S0168900217308380doi: 10.1016/j.nima.2017.07.063http://doi.org/10.1016/j.nima.2017.07.063
Z.Y. Yao, Y.G. Yuan, J. Wu et al., Rapid compton camera imaging for source terms investigation in the nuclear decommissioning with a subset-driven origin ensemble algorithm. Radiat. Phys. Chem. 197, 110133 (2022). https://www.sciencedirect.com/science/article/pii/S0969806X2200175Xhttps://www.sciencedirect.com/science/article/pii/S0969806X2200175Xdoi: 10.1016/j.radphyschem.2022.110133http://doi.org/10.1016/j.radphyschem.2022.110133
Z. Yao, Z. Chen, Y. Xiao, Origin ensemble algorithm based doppler broadening effect correction for CZT Compton camera in prompt gamma imaging: A Monte Carlo study. 2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 1-3. https://ieeexplore.ieee.org/abstract/document/9507818https://ieeexplore.ieee.org/abstract/document/9507818doi: 10.1109/NSS/MIC42677.2020.9507818http://doi.org/10.1109/NSS/MIC42677.2020.9507818
P.G. Ortega, I. Torres-Espallardo, F. Cerutti et al., Noise evaluation of Compton camera imaging for proton therapy. Physics in Medicine & Biology. 60: 1845 (2015). doi: 10.1088/0031-9155/60/5/1845http://doi.org/10.1088/0031-9155/60/5/1845
E. Muñoz, A. Ros, M. Borja-Lloret et al., Proton range verification with MACACO II Compton camera enhanced by a neural network for event selection. Scientific Reports 11, 1-12 (2021). https://www.nature.com/articles/s41598-021-88812-5https://www.nature.com/articles/s41598-021-88812-5doi: 10.1038/s41598-021-88812-5http://doi.org/10.1038/s41598-021-88812-5
E. Draeger, S. Peterson et al. Feasibility studies of a new event selection method to improve spatial resolution of Compton imaging for medical applications. IEEE transactions on radiation and plasma medical sciences. 1, 358-367 (2017). https://ieeexplore.ieee.org/document/7924319https://ieeexplore.ieee.org/document/7924319doi: 10.1109/TRPMS.2017.2703095http://doi.org/10.1109/TRPMS.2017.2703095
M. Zarifi, S. Guatelli, D. Bolst et al., Characterization of prompt gamma-ray emission with respect to the Bragg peak for proton beam range verification: a Monte Carlo study. Phys Medica 33, 197-206 (2017). https://www.sciencedirect.com/science/article/pii/S1120179716311188https://www.sciencedirect.com/science/article/pii/S1120179716311188doi: 10.1016/j.ejmp.2016.12.011http://doi.org/10.1016/j.ejmp.2016.12.011
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构