1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.Wuwei Institute of New Energy, Wuwei 733000, China
lijihao@sinap.ac.cn (Jihao Li)
* lilinfan@sinap.ac.cn (Linfan Li);
Scan for full text
Simple synthesis of silver nanocluster composites AgNCs@PE-g-PAA by irradiation method and fluorescence detection of Cr3+[J]. 核技术(英文版), 2023,34(5):73
Fei Han, Wen-Rui Wang, Dan-Yi Li, et al. Simple synthesis of silver nanocluster composites AgNCs@PE-g-PAA by irradiation method and fluorescence detection of Cr3+[J]. Nuclear Science and Techniques, 2023,34(5):73
Simple synthesis of silver nanocluster composites AgNCs@PE-g-PAA by irradiation method and fluorescence detection of Cr3+[J]. 核技术(英文版), 2023,34(5):73 DOI: 10.1007/s41365-023-01224-0.
Fei Han, Wen-Rui Wang, Dan-Yi Li, et al. Simple synthesis of silver nanocluster composites AgNCs@PE-g-PAA by irradiation method and fluorescence detection of Cr3+[J]. Nuclear Science and Techniques, 2023,34(5):73 DOI: 10.1007/s41365-023-01224-0.
Silver nanoclusters (AgNCs) are a new type of nanomaterials with similar properties to molecules and unique applications. The applications of AgNCs can be significantly expanded by combining them with different matrix materials to obtain AgNC composites. Using irradiation techniques, we developed a simple two-step method for preparing silver nanocluster composites. First, polyacrylic acid (PAA) chains were grafted onto the surface of a PE film as templates (PE-g-PAA). Subsequently, silver ions were reduced in situ on the surface of the template material to obtain the AgNC composites (AgNCs@PE-g-PAA). The degree of AgNC loading on the composite film was easily controlled by adjusting the reaction conditions. The loaded AgNCs were anchored to the carboxyl groups of the PAA and wrapped in the graft chain. The particle size of the AgNCs was only 4.38±0.85 nm, with a very uniform particle size distribution. The AgNCs@PE-g-PAA exhibited fluorescence characteristics derived from the AgNCs. The fluorescence of the AgNCs@PE-g-PAA was easily quenched by Cr,3+, ions. The composite can be used as a fluorescence test paper to realize visual detection of Cr,3+,.
Silver nanoclustersIrradiation graftingIrradiation reductionIn situ preparationFluorescence detection
C.-C. Hsu, Y.-Y. Chao, S.-W. Wang, et al. Polyethylenimine-capped silver nanoclusters as fluorescent sensors for the rapid detection of ellagic acid in cosmetics. Talanta 204, 484-490 (2019). doi: 10.1016/j.talanta.2019.06.047http://doi.org/10.1016/j.talanta.2019.06.047
L. Lu, X. An, W. Huang. Quantitative determination of calcium ions by means of enhanced fluorescence of silver nanocluster complex. Anal. Methods 9, 23-27 (2017). doi: 10.1039/C6AY02477Ghttp://doi.org/10.1039/C6AY02477G
Y.R. Tang, Y. Zhang, Y.Y. Su et al., Highly sensitive resonance light scattering bioassay for heparin based on polyethyleneimine-capped Ag nanoclusters. Talanta 115, 830-836 (2013). doi: 10.1016/j.talanta.2013.06.028http://doi.org/10.1016/j.talanta.2013.06.028
J. Yang and R. C. Jin, New advances in atomically precise silver nanoclusters. ACS Mater. Lett. 1. 482-489 (2019). doi: 10.1021/acsmaterialslett.9b00246http://doi.org/10.1021/acsmaterialslett.9b00246
L. Shang, S. J. Dong and G. U. Nienhaus, Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 6, 401-408 (2011). doi: 10.1016/j.nantod.2011.06.004http://doi.org/10.1016/j.nantod.2011.06.004
L.B. Zhang, E.K. Wang, Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today. 9, 132-157 (2014). doi: 10.1016/j.nantod.2014.02.010http://doi.org/10.1016/j.nantod.2014.02.010
H. Haidari, R. Bright, Z. Kopecki et al., Polycationic silver nanoclusters comprising nanoreservoirs of Ag+ Ions with high antimicrobial and antibiofilm activity. Acs Appl Mater Inter. 14, 390-403 (2021).doi: 10.1021/acsami.1c21657http://doi.org/10.1021/acsami.1c21657
Y.M. Su, X.Y. Li, Z. Wang et al., Structural rearrangement of Ag-60 nanocluster endowing different luminescence performances. J. Chem. Phys. 155, 234303 (2021). doi: 10.1063/5.0070138http://doi.org/10.1063/5.0070138
S. Ghosh, U. Anand, S. Mukherjee. Luminescent silver nanoclusters acting as a label-free photoswitch in metal ion sensing. Anal. Chem. 86, 3188-3194 (2014). doi: 10.1021/ac500122vhttp://doi.org/10.1021/ac500122v
H. Chen, Y. Li, Y. Song et al., A sandwich-type electrochemical immunosensor based on spherical nucleic acids-templated Ag nanoclusters for ultrasensitive detection of tumor biomarker. Biosensors and Bioelectronics. 223, 115029 (2023). doi: 10.1016/j.bios.2022.115029http://doi.org/10.1016/j.bios.2022.115029
Y. Jiang, P. Miao, DNA dumbbell and chameleon silver nanoclusters for mirna logic operations. Research. 2020, 1091605 (2020). doi: 10.34133/2020/1091605http://doi.org/10.34133/2020/1091605
K. Zheng, X. Yuan, N. Goswami et al., Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. Rsc Adv. 4. 105 (2014). doi: 10.1039/c4ra12054jhttp://doi.org/10.1039/c4ra12054j
S. Choi, Y. Zhao and J. Yu. Generation of luminescent silver nanodots in the presence of amino silane and sodium polyacrylate. J. Photochem. Photobiol. A-Chem. 374, 36-42 (2019). doi: 10.1016/j.jphotochem.2019.01.018http://doi.org/10.1016/j.jphotochem.2019.01.018
Z. Shen, H. W. Duan, H. Frey, Water-soluble fluorescent Ag nanoclusters obtained from multiarm star poly(acrylic acid) as "molecular hydrogel" templates. Advanced Materials 19, 349-352 (2007). doi: 10.1002/adma.200601740http://doi.org/10.1002/adma.200601740
H.X. Xu, K.S. Suslick, Sonochemical synthesis of highly fluorescent Ag nanoclusters. Acs Nano. 4, 3209-3214 (2010). doi: 10.1021/nn100987khttp://doi.org/10.1021/nn100987k
J.V. Rojas, C.H. Castano, Radiation-assisted synthesis of iridium and rhodium nanoparticles supported on polyvinylpyrrolidone. J Radioanal Nucl Ch. 302. 555-561 (2014). doi: 10.1007/s10967-014-3291-yhttp://doi.org/10.1007/s10967-014-3291-y
A.A. Zezin, D.I. Klimov, E.A. Zezina et al. Controlled radiation-chemical synthesis of metal polymer nanocomposites in the films of interpolyelectrolyte complexes: Principles, prospects and implications. Radiat. Phys. Chem. 169, 108076 (2020). doi: 10.1016/j.radphyschem.2018.11.030http://doi.org/10.1016/j.radphyschem.2018.11.030
S. Strohmaier and G. Zwierzchowski, Comparison of Co-60 and Ir-192 sources in HDR brachytherapy. J. Contemp. Brachytherapy. 3, 199-208 (2011). doi: 10.5114/jcb.2011.26471http://doi.org/10.5114/jcb.2011.26471
F. Han, J. Li, W. Wang et al., Synthesis of silver nanoclusters by irradiation reduction and detection of Cr(3+) ions. Rsc Adv. 12, 33207-33214 (2022). doi: 10.1039/d2ra06536chttp://doi.org/10.1039/d2ra06536c
I. Diez, R.H.A. Ras, Fluorescent silver nanoclusters. Nanoscale. 3, 1963-1970 (2011). doi: 10.1039/c1nr00006chttp://doi.org/10.1039/c1nr00006c
L.S. Ardekani, T.T. Moghadam, P.W. Thulstrup et al. Design and fabrication of a silver nanocluster-based aptasensor for lysozyme detection. Plasmonics 14, 1765-1774 (2019). doi: 10.1007/s11468-019-00954-5http://doi.org/10.1007/s11468-019-00954-5
Q. L. Wen, J. Peng, A.Y. Liu et al., DNA bioassays based on the fluorescence 'turn off' of silver nanocluster beacon. Luminescence. 35, 702-708 (2020). doi: 10.1002/bio.3775http://doi.org/10.1002/bio.3775
D. Li, B. Li, G. Lee et al., Facile synthesis of fluorescent silver nanoclusters as simultaneous detection and remediation for Hg2+. Bull. Korean Chem. Soc. 36, 1703-1706 (2015). doi: 10.1002/bkcs.10294http://doi.org/10.1002/bkcs.10294
J.H. Chen, X. Zhang, S.X. Cai, et al. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Biosens. Bioelectron. 57,226-231 (2014). doi: 10.1016/j.bios.2014.02.001http://doi.org/10.1016/j.bios.2014.02.001
Q. Qiu, R.R. Gao, A.M. Xie, et al. A ratiometric fluorescent sensor with different DNA-templated Ag NCs as signals for ATP detection. J. Photochem. Photobiol. A-Chem. 400, 112725 (2020). doi: 10.1016/j.jphotochem.2020.112725http://doi.org/10.1016/j.jphotochem.2020.112725
D.T. Lu, Z. Chen, Y.F. Li et al., Determination of mercury(II) by fluorescence using deoxyribonucleic acid stabilized silver nanoclusters. Anal. Lett. 48, 281-290 (2015). doi: 10.1080/00032719.2014.940527http://doi.org/10.1080/00032719.2014.940527
J.H. Geng, C. Yao, X.H. Kou et al., A fluorescent biofunctional DNA hydrogel prepared by enzymatic polymerization. Adv. Healthcare Mater. 7, 1700998 (2018). doi: 10.1002/adhm.201700998http://doi.org/10.1002/adhm.201700998
Y.Y. Wang, S.S. Wang, C.S. Lu et al., Three kinds of DNA-directed nanoclusters cooperating with graphene oxide for assaying mucin 1, carcinoembryonic antigen and cancer antigen 125. Sens. Actuator B-Chem. 262, 9-16 (2018). doi: 10.1016/j.snb.2018.01.235http://doi.org/10.1016/j.snb.2018.01.235
H. Oraby, M.M. Senna, M. Elsayed et al., Fabrication of reverse-osmosis membranes for the desalination of underground water via the gamma-radiation grafting of acrylic acid onto polyethylene films. J. Appl. Polym. Sci. 134. 45410 (2017). doi: 10.1002/app.45410http://doi.org/10.1002/app.45410
F. X. Sha, G. J. Cheng, Z. Y. Xuan, et al. Free-radical evolution and decay in cross-linked polytetrafluoroethylene irradiated by gamma-rays. Nucl. Sci. Tech. 33. 62 (2022). doi: 10.1007/s41365-022-01039-5http://doi.org/10.1007/s41365-022-01039-5
F. Wang, Q.F. Wu, Y.R. Jiang et al., Effect of irradiation on temperature performance of dispersion-compensation no-core cascade optical-fiber sensor coated with polydimethylsiloxane film. Nucl Sci Tech. 33, 110 (2022). doi: 10.1007/s41365-022-01100-3http://doi.org/10.1007/s41365-022-01100-3
W. Liu and Y. Yu, Removal of recalcitrant trivalent chromium complexes from industrial wastewater under strict discharge standards. Environ. Technol. Innov. 23, 101644 (2021). doi: 10.1016/j.eti.2021.101644http://doi.org/10.1016/j.eti.2021.101644
R. Bencheikh-Latmani, A. Obraztsova, M.R. Machey et al., Toxicity of Cr(III) to shewanella sp. strain MR-4 during Cr(VI) reduction. Environ. Sci. Technol. 41, 214-220 (2007). doi: 10.1021/es0622655http://doi.org/10.1021/es0622655
M. Chen, Y. Liu, H. Cao et al., The secondary and aggregation structural changes of BSA induced by trivalent chromium: A biophysical study. J. Luminescence. 158, 116-124 (2015). doi: 10.1016/j.jlumin.2014.09.021http://doi.org/10.1016/j.jlumin.2014.09.021
J. Wang, N. Graham, K. Sun et al., Ultra-low concentrations of detection for fluoride and trivalent chromium ions by multiple biomimetic nanochannels in a PET membrane. J. Cleaner Prod. 389, 136055 (2023). doi: 10.1016/j.jclepro.2023.136055http://doi.org/10.1016/j.jclepro.2023.136055
Y. Ye, H. Liu, L. Yang et al., Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles. Nanoscale 4, 6442-6448 (2012). doi: 10.1039/C2NR31985Chttp://doi.org/10.1039/C2NR31985C
S.H. Ren, S.G. Liu, Y. Ling et al., Fabrication of silver nanoclusters with enhanced fluorescence triggered by ethanol solvent: a selective fluorescent probe for Cr3+ detection. Anal. Bioanal. Chem. 411, 3301-3308 (2019). doi: 10.1007/s00216-019-01796-0http://doi.org/10.1007/s00216-019-01796-0
K.I. Kim, S.H. Oh, H.D. Kwen et al., Polymer-copper-modified MWNTs by radiation-induced graft polymerization and their efficient adsorption of odorous gases. J. Appl. Polym. Sci. 126, E64-E69 (2012). doi: 10.1002/app.35453http://doi.org/10.1002/app.35453
D.I. Klimov, E.A. Zezina, S.B. Zezin et al., Radiation-induced preparation of bimetallic nanoparticles in the films of interpolyelectrolyte complexes. Radiat. Phys. Chem. 142, 65-69 (2018). doi: 10.1016/j.radphyschem.2017.02.034http://doi.org/10.1016/j.radphyschem.2017.02.034
J. Y. He, X. Shang, C. L. Yang, et al. Antibody-responsive ratiometric fluorescence biosensing of biemissive silver nanoclusters wrapped in switchable DNA tweezers. Anal. Chem. 93, 11634-11640 (2021). doi: 10.1021/acs.analchem.1c02444http://doi.org/10.1021/acs.analchem.1c02444
S. Jin, W. Liu, D.Q. Hu et al., Aggregation-induced Emission (AIE) in Ag-Au bimetallic nanocluster. Chem.-Eur. J. 24, 3715 (2018). doi: 10.1002/chem.201800189http://doi.org/10.1002/chem.201800189
M. Ma and S. Zhu, Grafting polyelectrolytes onto polyacrylamide for flocculation - 1. Polymer synthesis and characterization. Colloid and Polymer Science. 277, 115-122 (1999). doi: 10.1007/s003960050375http://doi.org/10.1007/s003960050375
M.N.Z. Abidin, M.M. Nasef, T. Matsuura, Fouling prevention in polymeric membranes by radiation induced graft copolymerization. Polymers-Basel. 14, 197 (2022). doi: 10.3390/polym14010197http://doi.org/10.3390/polym14010197
L. Shang, S.J. Dong, Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Commun.2008, 1088-1090 (2008). doi: 10.1039/b717728chttp://doi.org/10.1039/b717728c
L. G. Wang, X. G. Zhang, S. F. Hou, et al. Preparation and characterization of hydrophilic PVDF membrane via graft modification by acrylic acid. Adv. Mater.Res. 306-307, (2011). doi: 10.4028/www.scientific.net/AMR.306-307.1563http://doi.org/10.4028/www.scientific.net/AMR.306-307.1563
Y.L. Li, W.Y. Xi, I. Hussain et al., Facile preparation of silver nanocluster self-assemblies with aggregation-induced emission by equilibrium shifting. Nanoscale 13, 14207-14213 (2021). doi: 10.1039/d1nr03445fhttp://doi.org/10.1039/d1nr03445f
S.A. Cavaco, S. Fernandes, M.M. Quina et al., Removal of chromium from electroplating industry effluents by ion exchange resins. J Hazard Mater. 144. 634-638 (2007). doi: 10.1016/j.jhazmat.2007.01.087http://doi.org/10.1016/j.jhazmat.2007.01.087
M. Chen, H.-H. Cai, F. Yang et al., Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles. Spectrochimica Acta Part A Molecular Biomolecular Spectroscopy 118, 776-781 (2014). doi: 10.1016/j.saa.2013.09.058http://doi.org/10.1016/j.saa.2013.09.058
W.-H. Chen, S.-Y. Lin and C.-Y. Liu, Capillary electrochromatographic separation of metal ion species with on-line detection by inductively coupled plasma mass spectrometry. Analytica Chimica Acta. 410, 25-35 (2000). doi: 10.1016/S0003-2670(00)00713-3http://doi.org/10.1016/S0003-2670(00)00713-3
J.P. Lafleur, E.D. Salin, Speciation of chromium by high-performance thin-layer chromatography with direct determination by laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. 80, 6821-6823 (2008). doi: 10.1021/ac8010582http://doi.org/10.1021/ac8010582
J. Threeprom, S. Purachaka and L. Potipan, Simultaneous determination of Cr(III)–EDTA and Cr(VI) by ion interaction chromatography using a C18 column. J. Chromatography A. 1073, 291-295 (2005). doi: 10.1016/j.chroma.2004.09.053http://doi.org/10.1016/j.chroma.2004.09.053
R.M. Cespón-Romero, M.C. Yebra-Biurrun and M. P. Bermejo-Barrera, Preconcentration and speciation of chromium by the determination of total chromium and chromium(III) in natural waters by flame atomic absorption spectrometry with a chelating ion-exchange flow injection system. Analytica Chimica Acta. 327, 37-45 (1996). doi: 10.1016/0003-2670(96)00062-1http://doi.org/10.1016/0003-2670(96)00062-1
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构