Your Location:
Home >
Browse articles >
High-energy nuclear physics meets machine learning
INVITED REVIEW | Updated:2023-08-14
    • High-energy nuclear physics meets machine learning

    • High-energy nuclear physics meets machine learning

    • 核技术(英文版)   2023年34卷第6期 文章编号:88
    • DOI:10.1007/s41365-023-01233-z    

      中图分类号:

    Scan for full text

  • 引用本文

  • High-energy nuclear physics meets machine learning[J]. 核技术(英文版), 2023, 34(6):88 DOI: 10.1007/s41365-023-01233-z.

    Wan-Bing He, Yu-Gang Ma, Long-Gang Pang, et al. High-energy nuclear physics meets machine learning[J]. Nuclear Science and Techniques, 2023, 34(6):88 DOI: 10.1007/s41365-023-01233-z.

  •  

    0

    浏览量

    0

    Downloads

    0

    CSCD

    文章被引用时,请邮件提醒。
    Submit
    工具集
    下载
    参考文献导出
    分享
    收藏
    添加至我的专辑

    相关文章

    Probing nucleon effective mass splitting with light particle emission
    Effects of sequential decay on collective flows and nuclear stopping power in heavy-ion collisions at intermediate energies
    Verification of neutron-induced fission product yields evaluated by a tensor decompsition model in transport-burnup simulations
    Machine learning-based analyses for total ionizing dose effects in bipolar junction transistors
    Improvement of machine learning-based vertex reconstruction for large liquid scintillator detectors with multiple types of PMTs

    相关作者

    暂无数据

    相关机构

    China Institute of Atomic Energy
    School of Science, Huzhou University
    Department of Physics, Tsinghua University
    Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University
    State Key Laboratory of Quantum Optics and Quantum Optics Devices & Collaborative Innovation Center of Extreme Optics, Institute of Theoretical Physics, Shanxi University
    0